# secMalASCT survival calculation # # License: GPL version 3 # Jens Mathis Sauer (c) 2020 library(survival) secmal <- read.csv2("current.csv", header=TRUE) # Setup survival object surv_dx <- Surv(time = secmal$event_time_dx, event = secmal$event_status) surv_asct <- Surv(time = secmal$event_time_asct, event = secmal$event_status) # plot survival after diagnosis # scaled to years png(filename = "survival_dx.png", width = 3000, height = 3000, res = 300) plot(survfit(surv_dx ~ 1), mark.time = TRUE, xscale = 12, xlab = "Years", ylab = "Survival") title("Kaplan-Meier estimate for\nsecMalASCT study", "Survival after diagnosis") dev.off() # One graph per sex png(filename = "survival_dx_sex.png", width = 3000, height = 3000, res = 300) plot(survfit(surv_dx ~ sex, data = secmal), mark.time = TRUE, xscale = 12, xlab = "Years", ylab = "Survival", lty = 2:3) title("Kaplan-Meier estimate for\nsecMalASCT study", "Survival after diagnosis") legend(100, .9, c("Female", "Male"), lty = 2:3) dev.off() # plot survival after diagnosis # scaled to years png(file = "survival_asct.png", width = 3000, height = 3000, res = 300) plot(survfit(surv_asct ~ 1), mark.time = TRUE, xscale = 12, xlab = "Years", ylab = "Survival") title("Kaplan-Meier estimate for\nsecMalASCT study", "Survival after transplantation") dev.off() # One graph per sex png(filename = "survival_asct_sex.png", width = 3000, height = 3000, res = 300) plot(survfit(surv_asct ~ sex, data = secmal), mark.time = TRUE, xscale = 12, xlab = "Years", ylab = "Survival", lty = 2:3) title("Kaplan-Meier estimate for\nsecMalASCT study", "Survival after transplantation") legend(100, .9, c("Female", "Male"), lty = 2:3) dev.off()