100 lines
3.1 KiB
R
100 lines
3.1 KiB
R
# secMalASCT survival calculation
|
|
#
|
|
# License: GPL version 3
|
|
# Jens Mathis Sauer (c) 2020
|
|
|
|
source("utils.R")
|
|
sma_init()
|
|
|
|
# Setup survival object
|
|
surv_dx <- Surv(time = secmal$event_time_dx, event = secmal$event_status)
|
|
surv_asct <- Surv(time = secmal$event_time_asct, event = secmal$event_status)
|
|
|
|
# plot survival after diagnosis
|
|
sma_plot_surv_dx <- function() {
|
|
ggsurvplot(survfit(surv_dx ~ 1), data = secmal, xscale = "d_y",
|
|
title = "Survival after diagnosis",
|
|
break.time.by = sma_break.time.by,
|
|
surv.median.line = "hv",
|
|
risk.table = "abs_pct",
|
|
ggtheme = theme_bw())
|
|
}
|
|
|
|
# plot survival after diagnosis per sex
|
|
sma_plot_surv_dx_sex <- function() {
|
|
ggsurvplot(survfit(surv_dx ~ sex, data = secmal), data = secmal,
|
|
xscale = "d_y", title = "Survival after diagnosis",
|
|
legend.labs = c("Female", "Male"),
|
|
break.time.by = sma_break.time.by,
|
|
surv.median.line = "hv",
|
|
risk.table = "abs_pct",
|
|
ggtheme = theme_bw(),
|
|
pval = TRUE)
|
|
}
|
|
|
|
# plot survival after transplantation
|
|
sma_plot_surv_asct <- function() {
|
|
ggsurvplot(survfit(surv_asct ~ 1), data = secmal, xscale = "d_y",
|
|
break.time.by = sma_break.time.by,
|
|
surv.median.line = "hv",
|
|
risk.table = "abs_pct",
|
|
legend = "none",
|
|
xlab = "Years",
|
|
palette = "lancet",
|
|
ggtheme = theme_bw())
|
|
}
|
|
|
|
# plot survival after transplantation per sex
|
|
sma_plot_surv_asct_sex <- function() {
|
|
ggsurvplot(survfit(surv_asct ~ sex, data = secmal), data = secmal,
|
|
xscale = "d_y", title = "Survival after transplantation",
|
|
legend.labs = c("Female", "Male"),
|
|
break.time.by = sma_break.time.by,
|
|
surv.median.line = "hv",
|
|
risk.table = "abs_pct",
|
|
ggtheme = theme_bw(),
|
|
pval = TRUE)
|
|
}
|
|
|
|
# plot survival after diagnosis per diagnosis
|
|
sma_plot_surv_dx_dx <- function() {
|
|
ggsurvplot(survfit(surv_dx ~ diagnosis, data = secmal), data = secmal,
|
|
xscale = "d_y", title = "Survival after diagnosis",
|
|
break.time.by = sma_break.time.by,
|
|
risk.table = "abs_pct",
|
|
ggtheme = theme_bw())
|
|
}
|
|
|
|
# plot survival after diagnosis per diagnosis
|
|
sma_plot_surv_asct_dx <- function() {
|
|
ggsurvplot(survfit(surv_asct ~ diagnosis, data = secmal), data = secmal,
|
|
xscale = "d_y", title = "Survival after transplantation",
|
|
break.time.by = sma_break.time.by,
|
|
risk.table = "abs_pct",
|
|
ggtheme = theme_bw())
|
|
}
|
|
|
|
# plot survival after SM diagnosis
|
|
sma_plot_surv_sm <- function() {
|
|
ggsurvplot(survfit(Surv(event_time_sm, event_status) ~ 1, secmal),
|
|
data = secmal, xscale = "d_y",
|
|
break.time.by = 365.25,
|
|
legend = "none",
|
|
xlab = "Years",
|
|
palette = "lancet",
|
|
ggtheme = theme_bw())
|
|
}
|
|
|
|
#
|
|
# Write survival plots to files
|
|
#
|
|
sma_plot_file_surv <- function() {
|
|
sma_plot_file("survival_dx.png", png, sma_plot_surv_dx)
|
|
sma_plot_file("survival_dx_sex.png", png, sma_plot_surv_dx_sex)
|
|
sma_plot_file("survival_asct.png", png, sma_plot_surv_asct)
|
|
sma_plot_file("survival_asct_sex.png", png, sma_plot_surv_asct_sex)
|
|
sma_plot_file("survival_dx_dx.png", png, sma_plot_surv_dx_dx)
|
|
sma_plot_file("survival_asct_dx.png", png, sma_plot_surv_asct_dx)
|
|
sma_plot_file("survival_sm.png", png, sma_plot_surv_sm)
|
|
}
|