1
0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2026-01-11 17:10:13 +00:00
torvalds-linux/drivers/irqchip/irq-apple-aic.c
Linus Torvalds 51d90a15fe ARM:
- Support for userspace handling of synchronous external aborts (SEAs),
   allowing the VMM to potentially handle the abort in a non-fatal
   manner.
 
 - Large rework of the VGIC's list register handling with the goal of
   supporting more active/pending IRQs than available list registers in
   hardware. In addition, the VGIC now supports EOImode==1 style
   deactivations for IRQs which may occur on a separate vCPU than the
   one that acked the IRQ.
 
 - Support for FEAT_XNX (user / privileged execute permissions) and
   FEAT_HAF (hardware update to the Access Flag) in the software page
   table walkers and shadow MMU.
 
 - Allow page table destruction to reschedule, fixing long need_resched
   latencies observed when destroying a large VM.
 
 - Minor fixes to KVM and selftests
 
 Loongarch:
 
 - Get VM PMU capability from HW GCFG register.
 
 - Add AVEC basic support.
 
 - Use 64-bit register definition for EIOINTC.
 
 - Add KVM timer test cases for tools/selftests.
 
 RISC/V:
 
 - SBI message passing (MPXY) support for KVM guest
 
 - Give a new, more specific error subcode for the case when in-kernel
   AIA virtualization fails to allocate IMSIC VS-file
 
 - Support KVM_DIRTY_LOG_INITIALLY_SET, enabling dirty log gradually
   in small chunks
 
 - Fix guest page fault within HLV* instructions
 
 - Flush VS-stage TLB after VCPU migration for Andes cores
 
 s390:
 
 - Always allocate ESCA (Extended System Control Area), instead of
   starting with the basic SCA and converting to ESCA with the
   addition of the 65th vCPU.  The price is increased number of
   exits (and worse performance) on z10 and earlier processor;
   ESCA was introduced by z114/z196 in 2010.
 
 - VIRT_XFER_TO_GUEST_WORK support
 
 - Operation exception forwarding support
 
 - Cleanups
 
 x86:
 
 - Skip the costly "zap all SPTEs" on an MMIO generation wrap if MMIO SPTE
   caching is disabled, as there can't be any relevant SPTEs to zap.
 
 - Relocate a misplaced export.
 
 - Fix an async #PF bug where KVM would clear the completion queue when the
   guest transitioned in and out of paging mode, e.g. when handling an SMI and
   then returning to paged mode via RSM.
 
 - Leave KVM's user-return notifier registered even when disabling
   virtualization, as long as kvm.ko is loaded.  On reboot/shutdown, keeping
   the notifier registered is ok; the kernel does not use the MSRs and the
   callback will run cleanly and restore host MSRs if the CPU manages to
   return to userspace before the system goes down.
 
 - Use the checked version of {get,put}_user().
 
 - Fix a long-lurking bug where KVM's lack of catch-up logic for periodic APIC
   timers can result in a hard lockup in the host.
 
 - Revert the periodic kvmclock sync logic now that KVM doesn't use a
   clocksource that's subject to NTP corrections.
 
 - Clean up KVM's handling of MMIO Stale Data and L1TF, and bury the latter
   behind CONFIG_CPU_MITIGATIONS.
 
 - Context switch XCR0, XSS, and PKRU outside of the entry/exit fast path;
   the only reason they were handled in the fast path was to paper of a bug
   in the core #MC code, and that has long since been fixed.
 
 - Add emulator support for AVX MOV instructions, to play nice with emulated
   devices whose guest drivers like to access PCI BARs with large multi-byte
   instructions.
 
 x86 (AMD):
 
 - Fix a few missing "VMCB dirty" bugs.
 
 - Fix the worst of KVM's lack of EFER.LMSLE emulation.
 
 - Add AVIC support for addressing 4k vCPUs in x2AVIC mode.
 
 - Fix incorrect handling of selective CR0 writes when checking intercepts
   during emulation of L2 instructions.
 
 - Fix a currently-benign bug where KVM would clobber SPEC_CTRL[63:32] on
   VMRUN and #VMEXIT.
 
 - Fix a bug where KVM corrupt the guest code stream when re-injecting a soft
   interrupt if the guest patched the underlying code after the VM-Exit, e.g.
   when Linux patches code with a temporary INT3.
 
 - Add KVM_X86_SNP_POLICY_BITS to advertise supported SNP policy bits to
   userspace, and extend KVM "support" to all policy bits that don't require
   any actual support from KVM.
 
 x86 (Intel):
 
 - Use the root role from kvm_mmu_page to construct EPTPs instead of the
   current vCPU state, partly as worthwhile cleanup, but mostly to pave the
   way for tracking per-root TLB flushes, and elide EPT flushes on pCPU
   migration if the root is clean from a previous flush.
 
 - Add a few missing nested consistency checks.
 
 - Rip out support for doing "early" consistency checks via hardware as the
   functionality hasn't been used in years and is no longer useful in general;
   replace it with an off-by-default module param to WARN if hardware fails
   a check that KVM does not perform.
 
 - Fix a currently-benign bug where KVM would drop the guest's SPEC_CTRL[63:32]
   on VM-Enter.
 
 - Misc cleanups.
 
 - Overhaul the TDX code to address systemic races where KVM (acting on behalf
   of userspace) could inadvertantly trigger lock contention in the TDX-Module;
   KVM was either working around these in weird, ugly ways, or was simply
   oblivious to them (though even Yan's devilish selftests could only break
   individual VMs, not the host kernel)
 
 - Fix a bug where KVM could corrupt a vCPU's cpu_list when freeing a TDX vCPU,
   if creating said vCPU failed partway through.
 
 - Fix a few sparse warnings (bad annotation, 0 != NULL).
 
 - Use struct_size() to simplify copying TDX capabilities to userspace.
 
 - Fix a bug where TDX would effectively corrupt user-return MSR values if the
   TDX Module rejects VP.ENTER and thus doesn't clobber host MSRs as expected.
 
 Selftests:
 
 - Fix a math goof in mmu_stress_test when running on a single-CPU system/VM.
 
 - Forcefully override ARCH from x86_64 to x86 to play nice with specifying
   ARCH=x86_64 on the command line.
 
 - Extend a bunch of nested VMX to validate nested SVM as well.
 
 - Add support for LA57 in the core VM_MODE_xxx macro, and add a test to
   verify KVM can save/restore nested VMX state when L1 is using 5-level
   paging, but L2 is not.
 
 - Clean up the guest paging code in anticipation of sharing the core logic for
   nested EPT and nested NPT.
 
 guest_memfd:
 
 - Add NUMA mempolicy support for guest_memfd, and clean up a variety of
   rough edges in guest_memfd along the way.
 
 - Define a CLASS to automatically handle get+put when grabbing a guest_memfd
   from a memslot to make it harder to leak references.
 
 - Enhance KVM selftests to make it easer to develop and debug selftests like
   those added for guest_memfd NUMA support, e.g. where test and/or KVM bugs
   often result in hard-to-debug SIGBUS errors.
 
 - Misc cleanups.
 
 Generic:
 
 - Use the recently-added WQ_PERCPU when creating the per-CPU workqueue for
   irqfd cleanup.
 
 - Fix a goof in the dirty ring documentation.
 
 - Fix choice of target for directed yield across different calls to
   kvm_vcpu_on_spin(); the function was always starting from the first
   vCPU instead of continuing the round-robin search.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCgAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmkvMa8UHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroMlFwf+Ow7zOYUuELSQ+Jn+hOYXiCNrdBDx
 ZamvMU8kLPr7XX0Zog6HgcMm//qyA6k5nSfqCjfsQZrIhRA/gWJ61jz1OX/Jxq18
 pJ9Vz6epnEPYiOtBwz+v8OS8MqDqVNzj2i6W1/cLPQE50c1Hhw64HWS5CSxDQiHW
 A7PVfl5YU12lW1vG3uE0sNESDt4Eh/spNM17iddXdF4ZUOGublserjDGjbc17E7H
 8BX3DkC2plqkJKwtjg0ae62hREkITZZc7RqsnftUkEhn0N0H9+rb6NKUyzIVh9NZ
 bCtCjtrKN9zfZ0Mujnms3ugBOVqNIputu/DtPnnFKXtXWSrHrgGSNv5ewA==
 =PEcw
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:

   - Support for userspace handling of synchronous external aborts
     (SEAs), allowing the VMM to potentially handle the abort in a
     non-fatal manner

   - Large rework of the VGIC's list register handling with the goal of
     supporting more active/pending IRQs than available list registers
     in hardware. In addition, the VGIC now supports EOImode==1 style
     deactivations for IRQs which may occur on a separate vCPU than the
     one that acked the IRQ

   - Support for FEAT_XNX (user / privileged execute permissions) and
     FEAT_HAF (hardware update to the Access Flag) in the software page
     table walkers and shadow MMU

   - Allow page table destruction to reschedule, fixing long
     need_resched latencies observed when destroying a large VM

   - Minor fixes to KVM and selftests

  Loongarch:

   - Get VM PMU capability from HW GCFG register

   - Add AVEC basic support

   - Use 64-bit register definition for EIOINTC

   - Add KVM timer test cases for tools/selftests

  RISC/V:

   - SBI message passing (MPXY) support for KVM guest

   - Give a new, more specific error subcode for the case when in-kernel
     AIA virtualization fails to allocate IMSIC VS-file

   - Support KVM_DIRTY_LOG_INITIALLY_SET, enabling dirty log gradually
     in small chunks

   - Fix guest page fault within HLV* instructions

   - Flush VS-stage TLB after VCPU migration for Andes cores

  s390:

   - Always allocate ESCA (Extended System Control Area), instead of
     starting with the basic SCA and converting to ESCA with the
     addition of the 65th vCPU. The price is increased number of exits
     (and worse performance) on z10 and earlier processor; ESCA was
     introduced by z114/z196 in 2010

   - VIRT_XFER_TO_GUEST_WORK support

   - Operation exception forwarding support

   - Cleanups

  x86:

   - Skip the costly "zap all SPTEs" on an MMIO generation wrap if MMIO
     SPTE caching is disabled, as there can't be any relevant SPTEs to
     zap

   - Relocate a misplaced export

   - Fix an async #PF bug where KVM would clear the completion queue
     when the guest transitioned in and out of paging mode, e.g. when
     handling an SMI and then returning to paged mode via RSM

   - Leave KVM's user-return notifier registered even when disabling
     virtualization, as long as kvm.ko is loaded. On reboot/shutdown,
     keeping the notifier registered is ok; the kernel does not use the
     MSRs and the callback will run cleanly and restore host MSRs if the
     CPU manages to return to userspace before the system goes down

   - Use the checked version of {get,put}_user()

   - Fix a long-lurking bug where KVM's lack of catch-up logic for
     periodic APIC timers can result in a hard lockup in the host

   - Revert the periodic kvmclock sync logic now that KVM doesn't use a
     clocksource that's subject to NTP corrections

   - Clean up KVM's handling of MMIO Stale Data and L1TF, and bury the
     latter behind CONFIG_CPU_MITIGATIONS

   - Context switch XCR0, XSS, and PKRU outside of the entry/exit fast
     path; the only reason they were handled in the fast path was to
     paper of a bug in the core #MC code, and that has long since been
     fixed

   - Add emulator support for AVX MOV instructions, to play nice with
     emulated devices whose guest drivers like to access PCI BARs with
     large multi-byte instructions

  x86 (AMD):

   - Fix a few missing "VMCB dirty" bugs

   - Fix the worst of KVM's lack of EFER.LMSLE emulation

   - Add AVIC support for addressing 4k vCPUs in x2AVIC mode

   - Fix incorrect handling of selective CR0 writes when checking
     intercepts during emulation of L2 instructions

   - Fix a currently-benign bug where KVM would clobber SPEC_CTRL[63:32]
     on VMRUN and #VMEXIT

   - Fix a bug where KVM corrupt the guest code stream when re-injecting
     a soft interrupt if the guest patched the underlying code after the
     VM-Exit, e.g. when Linux patches code with a temporary INT3

   - Add KVM_X86_SNP_POLICY_BITS to advertise supported SNP policy bits
     to userspace, and extend KVM "support" to all policy bits that
     don't require any actual support from KVM

  x86 (Intel):

   - Use the root role from kvm_mmu_page to construct EPTPs instead of
     the current vCPU state, partly as worthwhile cleanup, but mostly to
     pave the way for tracking per-root TLB flushes, and elide EPT
     flushes on pCPU migration if the root is clean from a previous
     flush

   - Add a few missing nested consistency checks

   - Rip out support for doing "early" consistency checks via hardware
     as the functionality hasn't been used in years and is no longer
     useful in general; replace it with an off-by-default module param
     to WARN if hardware fails a check that KVM does not perform

   - Fix a currently-benign bug where KVM would drop the guest's
     SPEC_CTRL[63:32] on VM-Enter

   - Misc cleanups

   - Overhaul the TDX code to address systemic races where KVM (acting
     on behalf of userspace) could inadvertantly trigger lock contention
     in the TDX-Module; KVM was either working around these in weird,
     ugly ways, or was simply oblivious to them (though even Yan's
     devilish selftests could only break individual VMs, not the host
     kernel)

   - Fix a bug where KVM could corrupt a vCPU's cpu_list when freeing a
     TDX vCPU, if creating said vCPU failed partway through

   - Fix a few sparse warnings (bad annotation, 0 != NULL)

   - Use struct_size() to simplify copying TDX capabilities to userspace

   - Fix a bug where TDX would effectively corrupt user-return MSR
     values if the TDX Module rejects VP.ENTER and thus doesn't clobber
     host MSRs as expected

  Selftests:

   - Fix a math goof in mmu_stress_test when running on a single-CPU
     system/VM

   - Forcefully override ARCH from x86_64 to x86 to play nice with
     specifying ARCH=x86_64 on the command line

   - Extend a bunch of nested VMX to validate nested SVM as well

   - Add support for LA57 in the core VM_MODE_xxx macro, and add a test
     to verify KVM can save/restore nested VMX state when L1 is using
     5-level paging, but L2 is not

   - Clean up the guest paging code in anticipation of sharing the core
     logic for nested EPT and nested NPT

  guest_memfd:

   - Add NUMA mempolicy support for guest_memfd, and clean up a variety
     of rough edges in guest_memfd along the way

   - Define a CLASS to automatically handle get+put when grabbing a
     guest_memfd from a memslot to make it harder to leak references

   - Enhance KVM selftests to make it easer to develop and debug
     selftests like those added for guest_memfd NUMA support, e.g. where
     test and/or KVM bugs often result in hard-to-debug SIGBUS errors

   - Misc cleanups

  Generic:

   - Use the recently-added WQ_PERCPU when creating the per-CPU
     workqueue for irqfd cleanup

   - Fix a goof in the dirty ring documentation

   - Fix choice of target for directed yield across different calls to
     kvm_vcpu_on_spin(); the function was always starting from the first
     vCPU instead of continuing the round-robin search"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (260 commits)
  KVM: arm64: at: Update AF on software walk only if VM has FEAT_HAFDBS
  KVM: arm64: at: Use correct HA bit in TCR_EL2 when regime is EL2
  KVM: arm64: Document KVM_PGTABLE_PROT_{UX,PX}
  KVM: arm64: Fix spelling mistake "Unexpeced" -> "Unexpected"
  KVM: arm64: Add break to default case in kvm_pgtable_stage2_pte_prot()
  KVM: arm64: Add endian casting to kvm_swap_s[12]_desc()
  KVM: arm64: Fix compilation when CONFIG_ARM64_USE_LSE_ATOMICS=n
  KVM: arm64: selftests: Add test for AT emulation
  KVM: arm64: nv: Expose hardware access flag management to NV guests
  KVM: arm64: nv: Implement HW access flag management in stage-2 SW PTW
  KVM: arm64: Implement HW access flag management in stage-1 SW PTW
  KVM: arm64: Propagate PTW errors up to AT emulation
  KVM: arm64: Add helper for swapping guest descriptor
  KVM: arm64: nv: Use pgtable definitions in stage-2 walk
  KVM: arm64: Handle endianness in read helper for emulated PTW
  KVM: arm64: nv: Stop passing vCPU through void ptr in S2 PTW
  KVM: arm64: Call helper for reading descriptors directly
  KVM: arm64: nv: Advertise support for FEAT_XNX
  KVM: arm64: Teach ptdump about FEAT_XNX permissions
  KVM: s390: Use generic VIRT_XFER_TO_GUEST_WORK functions
  ...
2025-12-05 17:01:20 -08:00

1119 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright The Asahi Linux Contributors
*
* Based on irq-lpc32xx:
* Copyright 2015-2016 Vladimir Zapolskiy <vz@mleia.com>
* Based on irq-bcm2836:
* Copyright 2015 Broadcom
*/
/*
* AIC is a fairly simple interrupt controller with the following features:
*
* - 896 level-triggered hardware IRQs
* - Single mask bit per IRQ
* - Per-IRQ affinity setting
* - Automatic masking on event delivery (auto-ack)
* - Software triggering (ORed with hw line)
* - 2 per-CPU IPIs (meant as "self" and "other", but they are
* interchangeable if not symmetric)
* - Automatic prioritization (single event/ack register per CPU, lower IRQs =
* higher priority)
* - Automatic masking on ack
* - Default "this CPU" register view and explicit per-CPU views
*
* In addition, this driver also handles FIQs, as these are routed to the same
* IRQ vector. These are used for Fast IPIs, the ARMv8 timer IRQs, and
* performance counters (TODO).
*
* Implementation notes:
*
* - This driver creates two IRQ domains, one for HW IRQs and internal FIQs,
* and one for IPIs.
* - Since Linux needs more than 2 IPIs, we implement a software IRQ controller
* and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused).
* - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu.
* - DT bindings use 3-cell form (like GIC):
* - <0 nr flags> - hwirq #nr
* - <1 nr flags> - FIQ #nr
* - nr=0 Physical HV timer
* - nr=1 Virtual HV timer
* - nr=2 Physical guest timer
* - nr=3 Virtual guest timer
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/bits.h>
#include <linux/bitfield.h>
#include <linux/cpuhotplug.h>
#include <linux/io.h>
#include <linux/irqchip.h>
#include <linux/irqchip/arm-vgic-info.h>
#include <linux/irqdomain.h>
#include <linux/jump_label.h>
#include <linux/limits.h>
#include <linux/of_address.h>
#include <linux/slab.h>
#include <asm/apple_m1_pmu.h>
#include <asm/cputype.h>
#include <asm/exception.h>
#include <asm/sysreg.h>
#include <asm/virt.h>
#include <dt-bindings/interrupt-controller/apple-aic.h>
/*
* AIC v1 registers (MMIO)
*/
#define AIC_INFO 0x0004
#define AIC_INFO_NR_IRQ GENMASK(15, 0)
#define AIC_CONFIG 0x0010
#define AIC_WHOAMI 0x2000
#define AIC_EVENT 0x2004
#define AIC_EVENT_DIE GENMASK(31, 24)
#define AIC_EVENT_TYPE GENMASK(23, 16)
#define AIC_EVENT_NUM GENMASK(15, 0)
#define AIC_EVENT_TYPE_FIQ 0 /* Software use */
#define AIC_EVENT_TYPE_IRQ 1
#define AIC_EVENT_TYPE_IPI 4
#define AIC_EVENT_IPI_OTHER 1
#define AIC_EVENT_IPI_SELF 2
#define AIC_IPI_SEND 0x2008
#define AIC_IPI_ACK 0x200c
#define AIC_IPI_MASK_SET 0x2024
#define AIC_IPI_MASK_CLR 0x2028
#define AIC_IPI_SEND_CPU(cpu) BIT(cpu)
#define AIC_IPI_OTHER BIT(0)
#define AIC_IPI_SELF BIT(31)
#define AIC_TARGET_CPU 0x3000
#define AIC_CPU_IPI_SET(cpu) (0x5008 + ((cpu) << 7))
#define AIC_CPU_IPI_CLR(cpu) (0x500c + ((cpu) << 7))
#define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7))
#define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7))
#define AIC_MAX_IRQ 0x400
/*
* AIC v2 registers (MMIO)
*/
#define AIC2_VERSION 0x0000
#define AIC2_VERSION_VER GENMASK(7, 0)
#define AIC2_INFO1 0x0004
#define AIC2_INFO1_NR_IRQ GENMASK(15, 0)
#define AIC2_INFO1_LAST_DIE GENMASK(27, 24)
#define AIC2_INFO2 0x0008
#define AIC2_INFO3 0x000c
#define AIC2_INFO3_MAX_IRQ GENMASK(15, 0)
#define AIC2_INFO3_MAX_DIE GENMASK(27, 24)
#define AIC2_RESET 0x0010
#define AIC2_RESET_RESET BIT(0)
#define AIC2_CONFIG 0x0014
#define AIC2_CONFIG_ENABLE BIT(0)
#define AIC2_CONFIG_PREFER_PCPU BIT(28)
#define AIC2_TIMEOUT 0x0028
#define AIC2_CLUSTER_PRIO 0x0030
#define AIC2_DELAY_GROUPS 0x0100
#define AIC2_IRQ_CFG 0x2000
/*
* AIC2 registers are laid out like this, starting at AIC2_IRQ_CFG:
*
* Repeat for each die:
* IRQ_CFG: u32 * MAX_IRQS
* SW_SET: u32 * (MAX_IRQS / 32)
* SW_CLR: u32 * (MAX_IRQS / 32)
* MASK_SET: u32 * (MAX_IRQS / 32)
* MASK_CLR: u32 * (MAX_IRQS / 32)
* HW_STATE: u32 * (MAX_IRQS / 32)
*
* This is followed by a set of event registers, each 16K page aligned.
* The first one is the AP event register we will use. Unfortunately,
* the actual implemented die count is not specified anywhere in the
* capability registers, so we have to explicitly specify the event
* register as a second reg entry in the device tree to remain
* forward-compatible.
*/
#define AIC2_IRQ_CFG_TARGET GENMASK(3, 0)
#define AIC2_IRQ_CFG_DELAY_IDX GENMASK(7, 5)
#define MASK_REG(x) (4 * ((x) >> 5))
#define MASK_BIT(x) BIT((x) & GENMASK(4, 0))
/*
* IMP-DEF sysregs that control FIQ sources
*/
/* IPI request registers */
#define SYS_IMP_APL_IPI_RR_LOCAL_EL1 sys_reg(3, 5, 15, 0, 0)
#define SYS_IMP_APL_IPI_RR_GLOBAL_EL1 sys_reg(3, 5, 15, 0, 1)
#define IPI_RR_CPU GENMASK(7, 0)
/* Cluster only used for the GLOBAL register */
#define IPI_RR_CLUSTER GENMASK(23, 16)
#define IPI_RR_TYPE GENMASK(29, 28)
#define IPI_RR_IMMEDIATE 0
#define IPI_RR_RETRACT 1
#define IPI_RR_DEFERRED 2
#define IPI_RR_NOWAKE 3
/* IPI status register */
#define SYS_IMP_APL_IPI_SR_EL1 sys_reg(3, 5, 15, 1, 1)
#define IPI_SR_PENDING BIT(0)
/* Guest timer FIQ enable register */
#define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2 sys_reg(3, 5, 15, 1, 3)
#define VM_TMR_FIQ_ENABLE_V BIT(0)
#define VM_TMR_FIQ_ENABLE_P BIT(1)
/* Deferred IPI countdown register */
#define SYS_IMP_APL_IPI_CR_EL1 sys_reg(3, 5, 15, 3, 1)
/* Uncore PMC control register */
#define SYS_IMP_APL_UPMCR0_EL1 sys_reg(3, 7, 15, 0, 4)
#define UPMCR0_IMODE GENMASK(18, 16)
#define UPMCR0_IMODE_OFF 0
#define UPMCR0_IMODE_AIC 2
#define UPMCR0_IMODE_HALT 3
#define UPMCR0_IMODE_FIQ 4
/* Uncore PMC status register */
#define SYS_IMP_APL_UPMSR_EL1 sys_reg(3, 7, 15, 6, 4)
#define UPMSR_IACT BIT(0)
/* MPIDR fields */
#define MPIDR_CPU(x) MPIDR_AFFINITY_LEVEL(x, 0)
#define MPIDR_CLUSTER(x) MPIDR_AFFINITY_LEVEL(x, 1)
#define AIC_IRQ_HWIRQ(die, irq) (FIELD_PREP(AIC_EVENT_DIE, die) | \
FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_IRQ) | \
FIELD_PREP(AIC_EVENT_NUM, irq))
#define AIC_FIQ_HWIRQ(x) (FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_FIQ) | \
FIELD_PREP(AIC_EVENT_NUM, x))
#define AIC_HWIRQ_IRQ(x) FIELD_GET(AIC_EVENT_NUM, x)
#define AIC_HWIRQ_DIE(x) FIELD_GET(AIC_EVENT_DIE, x)
#define AIC_NR_SWIPI 32
/*
* FIQ hwirq index definitions: FIQ sources use the DT binding defines
* directly, except that timers are special. At the irqchip level, the
* two timer types are represented by their access method: _EL0 registers
* or _EL02 registers. In the DT binding, the timers are represented
* by their purpose (HV or guest). This mapping is for when the kernel is
* running at EL2 (with VHE). When the kernel is running at EL1, the
* mapping differs and aic_irq_domain_translate() performs the remapping.
*/
enum fiq_hwirq {
/* Must be ordered as in apple-aic.h */
AIC_TMR_EL0_PHYS = AIC_TMR_HV_PHYS,
AIC_TMR_EL0_VIRT = AIC_TMR_HV_VIRT,
AIC_TMR_EL02_PHYS = AIC_TMR_GUEST_PHYS,
AIC_TMR_EL02_VIRT = AIC_TMR_GUEST_VIRT,
AIC_CPU_PMU_Effi = AIC_CPU_PMU_E,
AIC_CPU_PMU_Perf = AIC_CPU_PMU_P,
/* No need for this to be discovered from DT */
AIC_VGIC_MI,
AIC_NR_FIQ
};
/* True if UNCORE/UNCORE2 and Sn_... IPI registers are present and used (A11+) */
static DEFINE_STATIC_KEY_TRUE(use_fast_ipi);
/* True if SYS_IMP_APL_IPI_RR_LOCAL_EL1 exists for local fast IPIs (M1+) */
static DEFINE_STATIC_KEY_TRUE(use_local_fast_ipi);
struct aic_info {
int version;
/* Register offsets */
u32 event;
u32 target_cpu;
u32 irq_cfg;
u32 sw_set;
u32 sw_clr;
u32 mask_set;
u32 mask_clr;
u32 die_stride;
/* Features */
bool fast_ipi;
bool local_fast_ipi;
};
static const struct aic_info aic1_info __initconst = {
.version = 1,
.event = AIC_EVENT,
.target_cpu = AIC_TARGET_CPU,
};
static const struct aic_info aic1_fipi_info __initconst = {
.version = 1,
.event = AIC_EVENT,
.target_cpu = AIC_TARGET_CPU,
.fast_ipi = true,
};
static const struct aic_info aic1_local_fipi_info __initconst = {
.version = 1,
.event = AIC_EVENT,
.target_cpu = AIC_TARGET_CPU,
.fast_ipi = true,
.local_fast_ipi = true,
};
static const struct aic_info aic2_info __initconst = {
.version = 2,
.irq_cfg = AIC2_IRQ_CFG,
.fast_ipi = true,
.local_fast_ipi = true,
};
static const struct of_device_id aic_info_match[] = {
{
.compatible = "apple,t8103-aic",
.data = &aic1_local_fipi_info,
},
{
.compatible = "apple,t8015-aic",
.data = &aic1_fipi_info,
},
{
.compatible = "apple,aic",
.data = &aic1_info,
},
{
.compatible = "apple,aic2",
.data = &aic2_info,
},
{}
};
struct aic_irq_chip {
void __iomem *base;
void __iomem *event;
struct irq_domain *hw_domain;
struct {
cpumask_t aff;
} *fiq_aff[AIC_NR_FIQ];
int nr_irq;
int max_irq;
int nr_die;
int max_die;
struct aic_info info;
};
static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked);
static struct aic_irq_chip *aic_irqc;
static void aic_handle_ipi(struct pt_regs *regs);
static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg)
{
return readl_relaxed(ic->base + reg);
}
static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val)
{
writel_relaxed(val, ic->base + reg);
}
/*
* IRQ irqchip
*/
static void aic_irq_mask(struct irq_data *d)
{
irq_hw_number_t hwirq = irqd_to_hwirq(d);
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride;
u32 irq = AIC_HWIRQ_IRQ(hwirq);
aic_ic_write(ic, ic->info.mask_set + off + MASK_REG(irq), MASK_BIT(irq));
}
static void aic_irq_unmask(struct irq_data *d)
{
irq_hw_number_t hwirq = irqd_to_hwirq(d);
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride;
u32 irq = AIC_HWIRQ_IRQ(hwirq);
aic_ic_write(ic, ic->info.mask_clr + off + MASK_REG(irq), MASK_BIT(irq));
}
static void aic_irq_eoi(struct irq_data *d)
{
/*
* Reading the interrupt reason automatically acknowledges and masks
* the IRQ, so we just unmask it here if needed.
*/
if (!irqd_irq_masked(d))
aic_irq_unmask(d);
}
static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs)
{
struct aic_irq_chip *ic = aic_irqc;
u32 event, type, irq;
do {
/*
* We cannot use a relaxed read here, as reads from DMA buffers
* need to be ordered after the IRQ fires.
*/
event = readl(ic->event + ic->info.event);
type = FIELD_GET(AIC_EVENT_TYPE, event);
irq = FIELD_GET(AIC_EVENT_NUM, event);
if (type == AIC_EVENT_TYPE_IRQ)
generic_handle_domain_irq(aic_irqc->hw_domain, event);
else if (type == AIC_EVENT_TYPE_IPI && irq == 1)
aic_handle_ipi(regs);
else if (event != 0)
pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq);
} while (event);
/*
* vGIC maintenance interrupts end up here too, so we need to check
* for them separately. It should however only trigger when NV is
* in use, and be cleared when coming back from the handler.
*/
if (is_kernel_in_hyp_mode() &&
(read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EL2_En) &&
read_sysreg_s(SYS_ICH_MISR_EL2) != 0) {
u64 val;
generic_handle_domain_irq(aic_irqc->hw_domain,
AIC_FIQ_HWIRQ(AIC_VGIC_MI));
if (unlikely((read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EL2_En) &&
(val = read_sysreg_s(SYS_ICH_MISR_EL2)))) {
pr_err_ratelimited("vGIC IRQ fired and not handled by KVM (MISR=%llx), disabling.\n",
val);
sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EL2_En, 0);
}
}
}
static int aic_irq_set_affinity(struct irq_data *d,
const struct cpumask *mask_val, bool force)
{
irq_hw_number_t hwirq = irqd_to_hwirq(d);
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
int cpu;
BUG_ON(!ic->info.target_cpu);
if (force)
cpu = cpumask_first(mask_val);
else
cpu = cpumask_any_and(mask_val, cpu_online_mask);
aic_ic_write(ic, ic->info.target_cpu + AIC_HWIRQ_IRQ(hwirq) * 4, BIT(cpu));
irq_data_update_effective_affinity(d, cpumask_of(cpu));
return IRQ_SET_MASK_OK;
}
static int aic_irq_set_type(struct irq_data *d, unsigned int type)
{
/*
* Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't
* have a way to find out the type of any given IRQ, so just allow both.
*/
return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL;
}
static struct irq_chip aic_chip = {
.name = "AIC",
.irq_mask = aic_irq_mask,
.irq_unmask = aic_irq_unmask,
.irq_eoi = aic_irq_eoi,
.irq_set_affinity = aic_irq_set_affinity,
.irq_set_type = aic_irq_set_type,
};
static struct irq_chip aic2_chip = {
.name = "AIC2",
.irq_mask = aic_irq_mask,
.irq_unmask = aic_irq_unmask,
.irq_eoi = aic_irq_eoi,
.irq_set_type = aic_irq_set_type,
};
/*
* FIQ irqchip
*/
static unsigned long aic_fiq_get_idx(struct irq_data *d)
{
return AIC_HWIRQ_IRQ(irqd_to_hwirq(d));
}
static void aic_fiq_set_mask(struct irq_data *d)
{
/* Only the guest timers have real mask bits, unfortunately. */
switch (aic_fiq_get_idx(d)) {
case AIC_TMR_EL02_PHYS:
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0);
isb();
break;
case AIC_TMR_EL02_VIRT:
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0);
isb();
break;
default:
break;
}
}
static void aic_fiq_clear_mask(struct irq_data *d)
{
switch (aic_fiq_get_idx(d)) {
case AIC_TMR_EL02_PHYS:
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P);
isb();
break;
case AIC_TMR_EL02_VIRT:
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V);
isb();
break;
default:
break;
}
}
static void aic_fiq_mask(struct irq_data *d)
{
aic_fiq_set_mask(d);
__this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d)));
}
static void aic_fiq_unmask(struct irq_data *d)
{
aic_fiq_clear_mask(d);
__this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d)));
}
static void aic_fiq_eoi(struct irq_data *d)
{
/* We mask to ack (where we can), so we need to unmask at EOI. */
if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d)))
aic_fiq_clear_mask(d);
}
#define TIMER_FIRING(x) \
(((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK | \
ARCH_TIMER_CTRL_IT_STAT)) == \
(ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT))
static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs)
{
/*
* It would be really nice if we had a system register that lets us get
* the FIQ source state without having to peek down into sources...
* but such a register does not seem to exist.
*
* So, we have these potential sources to test for:
* - Fast IPIs (not yet used)
* - The 4 timers (CNTP, CNTV for each of HV and guest)
* - Per-core PMCs (not yet supported)
* - Per-cluster uncore PMCs (not yet supported)
*
* Since not dealing with any of these results in a FIQ storm,
* we check for everything here, even things we don't support yet.
*/
if (static_branch_likely(&use_fast_ipi) &&
(read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING))
aic_handle_ipi(regs);
if (TIMER_FIRING(read_sysreg(cntp_ctl_el0)))
generic_handle_domain_irq(aic_irqc->hw_domain,
AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS));
if (TIMER_FIRING(read_sysreg(cntv_ctl_el0)))
generic_handle_domain_irq(aic_irqc->hw_domain,
AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT));
if (is_kernel_in_hyp_mode()) {
uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2);
if ((enabled & VM_TMR_FIQ_ENABLE_P) &&
TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02)))
generic_handle_domain_irq(aic_irqc->hw_domain,
AIC_FIQ_HWIRQ(AIC_TMR_EL02_PHYS));
if ((enabled & VM_TMR_FIQ_ENABLE_V) &&
TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02)))
generic_handle_domain_irq(aic_irqc->hw_domain,
AIC_FIQ_HWIRQ(AIC_TMR_EL02_VIRT));
}
if ((read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & (PMCR0_IMODE | PMCR0_IACT)) ==
(FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_FIQ) | PMCR0_IACT))
generic_handle_domain_irq(aic_irqc->hw_domain,
AIC_FIQ_HWIRQ(AIC_CPU_PMU_P));
if (static_branch_likely(&use_fast_ipi) &&
(FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ) &&
(read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) {
/* Same story with uncore PMCs */
pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n");
sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
}
}
static int aic_fiq_set_type(struct irq_data *d, unsigned int type)
{
return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL;
}
static struct irq_chip fiq_chip = {
.name = "AIC-FIQ",
.irq_mask = aic_fiq_mask,
.irq_unmask = aic_fiq_unmask,
.irq_ack = aic_fiq_set_mask,
.irq_eoi = aic_fiq_eoi,
.irq_set_type = aic_fiq_set_type,
};
/*
* Main IRQ domain
*/
static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq,
irq_hw_number_t hw)
{
struct aic_irq_chip *ic = id->host_data;
u32 type = FIELD_GET(AIC_EVENT_TYPE, hw);
struct irq_chip *chip = &aic_chip;
if (ic->info.version == 2)
chip = &aic2_chip;
if (type == AIC_EVENT_TYPE_IRQ) {
irq_domain_set_info(id, irq, hw, chip, id->host_data,
handle_fasteoi_irq, NULL, NULL);
irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
} else {
irq_set_percpu_devid(irq);
irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data,
handle_percpu_devid_irq, NULL, NULL);
}
return 0;
}
static int aic_irq_get_fwspec_info(struct irq_fwspec *fwspec, struct irq_fwspec_info *info)
{
const struct cpumask *mask;
u32 intid;
info->flags = 0;
info->affinity = NULL;
if (fwspec->param[0] != AIC_FIQ)
return 0;
if (fwspec->param_count == 3)
intid = fwspec->param[1];
else
intid = fwspec->param[2];
if (aic_irqc->fiq_aff[intid])
mask = &aic_irqc->fiq_aff[intid]->aff;
else
mask = cpu_possible_mask;
info->affinity = mask;
info->flags = IRQ_FWSPEC_INFO_AFFINITY_VALID;
return 0;
}
static int aic_irq_domain_translate(struct irq_domain *id,
struct irq_fwspec *fwspec,
unsigned long *hwirq,
unsigned int *type)
{
struct aic_irq_chip *ic = id->host_data;
u32 *args;
u32 die = 0;
if (fwspec->param_count < 3 || fwspec->param_count > 4 ||
!is_of_node(fwspec->fwnode))
return -EINVAL;
args = &fwspec->param[1];
if (fwspec->param_count == 4) {
die = args[0];
args++;
}
switch (fwspec->param[0]) {
case AIC_IRQ:
if (die >= ic->nr_die)
return -EINVAL;
if (args[0] >= ic->nr_irq)
return -EINVAL;
*hwirq = AIC_IRQ_HWIRQ(die, args[0]);
break;
case AIC_FIQ:
if (die != 0)
return -EINVAL;
if (args[0] >= AIC_NR_FIQ)
return -EINVAL;
*hwirq = AIC_FIQ_HWIRQ(args[0]);
/*
* In EL1 the non-redirected registers are the guest's,
* not EL2's, so remap the hwirqs to match.
*/
if (!is_kernel_in_hyp_mode()) {
switch (args[0]) {
case AIC_TMR_GUEST_PHYS:
*hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS);
break;
case AIC_TMR_GUEST_VIRT:
*hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT);
break;
case AIC_TMR_HV_PHYS:
case AIC_TMR_HV_VIRT:
return -ENOENT;
default:
break;
}
}
/* Merge the two PMUs on a single interrupt */
if (*hwirq == AIC_CPU_PMU_E)
*hwirq = AIC_CPU_PMU_P;
break;
default:
return -EINVAL;
}
*type = args[1] & IRQ_TYPE_SENSE_MASK;
return 0;
}
static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
unsigned int type = IRQ_TYPE_NONE;
struct irq_fwspec *fwspec = arg;
irq_hw_number_t hwirq;
int i, ret;
ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type);
if (ret)
return ret;
for (i = 0; i < nr_irqs; i++) {
ret = aic_irq_domain_map(domain, virq + i, hwirq + i);
if (ret)
return ret;
}
return 0;
}
static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
int i;
for (i = 0; i < nr_irqs; i++) {
struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
irq_set_handler(virq + i, NULL);
irq_domain_reset_irq_data(d);
}
}
static const struct irq_domain_ops aic_irq_domain_ops = {
.translate = aic_irq_domain_translate,
.alloc = aic_irq_domain_alloc,
.free = aic_irq_domain_free,
.get_fwspec_info = aic_irq_get_fwspec_info,
};
/*
* IPI irqchip
*/
static void aic_ipi_send_fast(int cpu)
{
u64 mpidr = cpu_logical_map(cpu);
u64 my_mpidr = read_cpuid_mpidr();
u64 cluster = MPIDR_CLUSTER(mpidr);
u64 idx = MPIDR_CPU(mpidr);
if (static_branch_likely(&use_local_fast_ipi) && MPIDR_CLUSTER(my_mpidr) == cluster) {
write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx), SYS_IMP_APL_IPI_RR_LOCAL_EL1);
} else {
write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx) | FIELD_PREP(IPI_RR_CLUSTER, cluster),
SYS_IMP_APL_IPI_RR_GLOBAL_EL1);
}
isb();
}
static void aic_handle_ipi(struct pt_regs *regs)
{
/*
* Ack the IPI. We need to order this after the AIC event read, but
* that is enforced by normal MMIO ordering guarantees.
*
* For the Fast IPI case, this needs to be ordered before the vIPI
* handling below, so we need to isb();
*/
if (static_branch_likely(&use_fast_ipi)) {
write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
isb();
} else {
aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER);
}
ipi_mux_process();
/*
* No ordering needed here; at worst this just changes the timing of
* when the next IPI will be delivered.
*/
if (!static_branch_likely(&use_fast_ipi))
aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
}
static void aic_ipi_send_single(unsigned int cpu)
{
if (static_branch_likely(&use_fast_ipi))
aic_ipi_send_fast(cpu);
else
aic_ic_write(aic_irqc, AIC_IPI_SEND, AIC_IPI_SEND_CPU(cpu));
}
static int __init aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node)
{
int base_ipi;
base_ipi = ipi_mux_create(AIC_NR_SWIPI, aic_ipi_send_single);
if (WARN_ON(base_ipi <= 0))
return -ENODEV;
set_smp_ipi_range(base_ipi, AIC_NR_SWIPI);
return 0;
}
static int aic_init_cpu(unsigned int cpu)
{
/* Mask all hard-wired per-CPU IRQ/FIQ sources */
/* Pending Fast IPI FIQs */
if (static_branch_likely(&use_fast_ipi))
write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
/* Timer FIQs */
sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
/* EL2-only (VHE mode) IRQ sources */
if (is_kernel_in_hyp_mode()) {
/* Guest timers */
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2,
VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0);
/* vGIC maintenance IRQ */
sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EL2_En, 0);
}
/* PMC FIQ */
sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT,
FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF));
/* Uncore PMC FIQ */
if (static_branch_likely(&use_fast_ipi)) {
sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
}
/* Commit all of the above */
isb();
if (aic_irqc->info.version == 1) {
/*
* Make sure the kernel's idea of logical CPU order is the same as AIC's
* If we ever end up with a mismatch here, we will have to introduce
* a mapping table similar to what other irqchip drivers do.
*/
WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id());
/*
* Always keep IPIs unmasked at the hardware level (except auto-masking
* by AIC during processing). We manage masks at the vIPI level.
* These registers only exist on AICv1, AICv2 always uses fast IPIs.
*/
aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER);
if (static_branch_likely(&use_fast_ipi)) {
aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF | AIC_IPI_OTHER);
} else {
aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF);
aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
}
}
/* Initialize the local mask state */
__this_cpu_write(aic_fiq_unmasked, 0);
return 0;
}
static struct gic_kvm_info vgic_info __initdata = {
.type = GIC_V3,
.no_maint_irq_mask = true,
.no_hw_deactivation = true,
};
static void build_fiq_affinity(struct aic_irq_chip *ic, struct device_node *aff)
{
int i, n;
u32 fiq;
if (of_property_read_u32(aff, "apple,fiq-index", &fiq) ||
WARN_ON(fiq >= AIC_NR_FIQ) || ic->fiq_aff[fiq])
return;
n = of_property_count_elems_of_size(aff, "cpus", sizeof(u32));
if (WARN_ON(n < 0))
return;
ic->fiq_aff[fiq] = kzalloc(sizeof(*ic->fiq_aff[fiq]), GFP_KERNEL);
if (!ic->fiq_aff[fiq])
return;
for (i = 0; i < n; i++) {
struct device_node *cpu_node;
u32 cpu_phandle;
int cpu;
if (of_property_read_u32_index(aff, "cpus", i, &cpu_phandle))
continue;
cpu_node = of_find_node_by_phandle(cpu_phandle);
if (WARN_ON(!cpu_node))
continue;
cpu = of_cpu_node_to_id(cpu_node);
of_node_put(cpu_node);
if (WARN_ON(cpu < 0))
continue;
cpumask_set_cpu(cpu, &ic->fiq_aff[fiq]->aff);
}
}
static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent)
{
int i, die;
u32 off, start_off;
void __iomem *regs;
struct aic_irq_chip *irqc;
struct device_node *affs;
const struct of_device_id *match;
regs = of_iomap(node, 0);
if (WARN_ON(!regs))
return -EIO;
irqc = kzalloc(sizeof(*irqc), GFP_KERNEL);
if (!irqc) {
iounmap(regs);
return -ENOMEM;
}
irqc->base = regs;
match = of_match_node(aic_info_match, node);
if (!match)
goto err_unmap;
irqc->info = *(struct aic_info *)match->data;
aic_irqc = irqc;
switch (irqc->info.version) {
case 1: {
u32 info;
info = aic_ic_read(irqc, AIC_INFO);
irqc->nr_irq = FIELD_GET(AIC_INFO_NR_IRQ, info);
irqc->max_irq = AIC_MAX_IRQ;
irqc->nr_die = irqc->max_die = 1;
off = start_off = irqc->info.target_cpu;
off += sizeof(u32) * irqc->max_irq; /* TARGET_CPU */
irqc->event = irqc->base;
break;
}
case 2: {
u32 info1, info3;
info1 = aic_ic_read(irqc, AIC2_INFO1);
info3 = aic_ic_read(irqc, AIC2_INFO3);
irqc->nr_irq = FIELD_GET(AIC2_INFO1_NR_IRQ, info1);
irqc->max_irq = FIELD_GET(AIC2_INFO3_MAX_IRQ, info3);
irqc->nr_die = FIELD_GET(AIC2_INFO1_LAST_DIE, info1) + 1;
irqc->max_die = FIELD_GET(AIC2_INFO3_MAX_DIE, info3);
off = start_off = irqc->info.irq_cfg;
off += sizeof(u32) * irqc->max_irq; /* IRQ_CFG */
irqc->event = of_iomap(node, 1);
if (WARN_ON(!irqc->event))
goto err_unmap;
break;
}
}
irqc->info.sw_set = off;
off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_SET */
irqc->info.sw_clr = off;
off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_CLR */
irqc->info.mask_set = off;
off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_SET */
irqc->info.mask_clr = off;
off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_CLR */
off += sizeof(u32) * (irqc->max_irq >> 5); /* HW_STATE */
if (!irqc->info.fast_ipi)
static_branch_disable(&use_fast_ipi);
if (!irqc->info.local_fast_ipi)
static_branch_disable(&use_local_fast_ipi);
irqc->info.die_stride = off - start_off;
irqc->hw_domain = irq_domain_create_tree(of_fwnode_handle(node),
&aic_irq_domain_ops, irqc);
if (WARN_ON(!irqc->hw_domain))
goto err_unmap;
irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED);
if (aic_init_smp(irqc, node))
goto err_remove_domain;
affs = of_get_child_by_name(node, "affinities");
if (affs) {
struct device_node *chld;
for_each_child_of_node(affs, chld)
build_fiq_affinity(irqc, chld);
}
of_node_put(affs);
set_handle_irq(aic_handle_irq);
set_handle_fiq(aic_handle_fiq);
off = 0;
for (die = 0; die < irqc->nr_die; die++) {
for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++)
aic_ic_write(irqc, irqc->info.mask_set + off + i * 4, U32_MAX);
for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++)
aic_ic_write(irqc, irqc->info.sw_clr + off + i * 4, U32_MAX);
if (irqc->info.target_cpu)
for (i = 0; i < irqc->nr_irq; i++)
aic_ic_write(irqc, irqc->info.target_cpu + off + i * 4, 1);
off += irqc->info.die_stride;
}
if (irqc->info.version == 2) {
u32 config = aic_ic_read(irqc, AIC2_CONFIG);
config |= AIC2_CONFIG_ENABLE;
aic_ic_write(irqc, AIC2_CONFIG, config);
}
if (!is_kernel_in_hyp_mode())
pr_info("Kernel running in EL1, mapping interrupts");
if (static_branch_likely(&use_fast_ipi))
pr_info("Using Fast IPIs");
cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING,
"irqchip/apple-aic/ipi:starting",
aic_init_cpu, NULL);
if (is_kernel_in_hyp_mode()) {
struct irq_fwspec mi = {
.fwnode = of_fwnode_handle(node),
.param_count = 3,
.param = {
[0] = AIC_FIQ, /* This is a lie */
[1] = AIC_VGIC_MI,
[2] = IRQ_TYPE_LEVEL_HIGH,
},
};
vgic_info.maint_irq = irq_create_fwspec_mapping(&mi);
WARN_ON(!vgic_info.maint_irq);
}
vgic_set_kvm_info(&vgic_info);
pr_info("Initialized with %d/%d IRQs * %d/%d die(s), %d FIQs, %d vIPIs",
irqc->nr_irq, irqc->max_irq, irqc->nr_die, irqc->max_die, AIC_NR_FIQ, AIC_NR_SWIPI);
return 0;
err_remove_domain:
irq_domain_remove(irqc->hw_domain);
err_unmap:
if (irqc->event && irqc->event != irqc->base)
iounmap(irqc->event);
iounmap(irqc->base);
kfree(irqc);
return -ENODEV;
}
IRQCHIP_DECLARE(apple_aic, "apple,aic", aic_of_ic_init);
IRQCHIP_DECLARE(apple_aic2, "apple,aic2", aic_of_ic_init);