1
0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2026-01-12 01:20:14 +00:00
Thomas Gleixner 32034df66b rseq: Switch to TIF_RSEQ if supported
TIF_NOTIFY_RESUME is a multiplexing TIF bit, which is suboptimal especially
with the RSEQ fast path depending on it, but not really handling it.

Define a separate TIF_RSEQ in the generic TIF space and enable the full
separation of fast and slow path for architectures which utilize that.

That avoids the hassle with invocations of resume_user_mode_work() from
hypervisors, which clear TIF_NOTIFY_RESUME. It makes the therefore required
re-evaluation at the end of vcpu_run() a NOOP on architectures which
utilize the generic TIF space and have a separate TIF_RSEQ.

The hypervisor TIF handling does not include the separate TIF_RSEQ as there
is no point in doing so. The guest does neither know nor care about the VMM
host applications RSEQ state. That state is only relevant when the ioctl()
returns to user space.

The fastpath implementation still utilizes TIF_NOTIFY_RESUME for failure
handling, but this only happens within exit_to_user_mode_loop(), so
arguably the hypervisor ioctl() code is long done when this happens.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://patch.msgid.link/20251027084307.903622031@linutronix.de
2025-11-04 08:35:37 +01:00

617 lines
18 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_RSEQ_ENTRY_H
#define _LINUX_RSEQ_ENTRY_H
/* Must be outside the CONFIG_RSEQ guard to resolve the stubs */
#ifdef CONFIG_RSEQ_STATS
#include <linux/percpu.h>
struct rseq_stats {
unsigned long exit;
unsigned long signal;
unsigned long slowpath;
unsigned long fastpath;
unsigned long ids;
unsigned long cs;
unsigned long clear;
unsigned long fixup;
};
DECLARE_PER_CPU(struct rseq_stats, rseq_stats);
/*
* Slow path has interrupts and preemption enabled, but the fast path
* runs with interrupts disabled so there is no point in having the
* preemption checks implied in __this_cpu_inc() for every operation.
*/
#ifdef RSEQ_BUILD_SLOW_PATH
#define rseq_stat_inc(which) this_cpu_inc((which))
#else
#define rseq_stat_inc(which) raw_cpu_inc((which))
#endif
#else /* CONFIG_RSEQ_STATS */
#define rseq_stat_inc(x) do { } while (0)
#endif /* !CONFIG_RSEQ_STATS */
#ifdef CONFIG_RSEQ
#include <linux/jump_label.h>
#include <linux/rseq.h>
#include <linux/uaccess.h>
#include <linux/tracepoint-defs.h>
#ifdef CONFIG_TRACEPOINTS
DECLARE_TRACEPOINT(rseq_update);
DECLARE_TRACEPOINT(rseq_ip_fixup);
void __rseq_trace_update(struct task_struct *t);
void __rseq_trace_ip_fixup(unsigned long ip, unsigned long start_ip,
unsigned long offset, unsigned long abort_ip);
static inline void rseq_trace_update(struct task_struct *t, struct rseq_ids *ids)
{
if (tracepoint_enabled(rseq_update) && ids)
__rseq_trace_update(t);
}
static inline void rseq_trace_ip_fixup(unsigned long ip, unsigned long start_ip,
unsigned long offset, unsigned long abort_ip)
{
if (tracepoint_enabled(rseq_ip_fixup))
__rseq_trace_ip_fixup(ip, start_ip, offset, abort_ip);
}
#else /* CONFIG_TRACEPOINT */
static inline void rseq_trace_update(struct task_struct *t, struct rseq_ids *ids) { }
static inline void rseq_trace_ip_fixup(unsigned long ip, unsigned long start_ip,
unsigned long offset, unsigned long abort_ip) { }
#endif /* !CONFIG_TRACEPOINT */
DECLARE_STATIC_KEY_MAYBE(CONFIG_RSEQ_DEBUG_DEFAULT_ENABLE, rseq_debug_enabled);
#ifdef RSEQ_BUILD_SLOW_PATH
#define rseq_inline
#else
#define rseq_inline __always_inline
#endif
bool rseq_debug_update_user_cs(struct task_struct *t, struct pt_regs *regs, unsigned long csaddr);
bool rseq_debug_validate_ids(struct task_struct *t);
static __always_inline void rseq_note_user_irq_entry(void)
{
if (IS_ENABLED(CONFIG_GENERIC_IRQ_ENTRY))
current->rseq.event.user_irq = true;
}
/*
* Check whether there is a valid critical section and whether the
* instruction pointer in @regs is inside the critical section.
*
* - If the critical section is invalid, terminate the task.
*
* - If valid and the instruction pointer is inside, set it to the abort IP.
*
* - If valid and the instruction pointer is outside, clear the critical
* section address.
*
* Returns true, if the section was valid and either fixup or clear was
* done, false otherwise.
*
* In the failure case task::rseq_event::fatal is set when a invalid
* section was found. It's clear when the failure was an unresolved page
* fault.
*
* If inlined into the exit to user path with interrupts disabled, the
* caller has to protect against page faults with pagefault_disable().
*
* In preemptible task context this would be counterproductive as the page
* faults could not be fully resolved. As a consequence unresolved page
* faults in task context are fatal too.
*/
#ifdef RSEQ_BUILD_SLOW_PATH
/*
* The debug version is put out of line, but kept here so the code stays
* together.
*
* @csaddr has already been checked by the caller to be in user space
*/
bool rseq_debug_update_user_cs(struct task_struct *t, struct pt_regs *regs,
unsigned long csaddr)
{
struct rseq_cs __user *ucs = (struct rseq_cs __user *)(unsigned long)csaddr;
u64 start_ip, abort_ip, offset, cs_end, head, tasksize = TASK_SIZE;
unsigned long ip = instruction_pointer(regs);
u64 __user *uc_head = (u64 __user *) ucs;
u32 usig, __user *uc_sig;
scoped_user_rw_access(ucs, efault) {
/*
* Evaluate the user pile and exit if one of the conditions
* is not fulfilled.
*/
unsafe_get_user(start_ip, &ucs->start_ip, efault);
if (unlikely(start_ip >= tasksize))
goto die;
/* If outside, just clear the critical section. */
if (ip < start_ip)
goto clear;
unsafe_get_user(offset, &ucs->post_commit_offset, efault);
cs_end = start_ip + offset;
/* Check for overflow and wraparound */
if (unlikely(cs_end >= tasksize || cs_end < start_ip))
goto die;
/* If not inside, clear it. */
if (ip >= cs_end)
goto clear;
unsafe_get_user(abort_ip, &ucs->abort_ip, efault);
/* Ensure it's "valid" */
if (unlikely(abort_ip >= tasksize || abort_ip < sizeof(*uc_sig)))
goto die;
/* Validate that the abort IP is not in the critical section */
if (unlikely(abort_ip - start_ip < offset))
goto die;
/*
* Check version and flags for 0. No point in emitting
* deprecated warnings before dying. That could be done in
* the slow path eventually, but *shrug*.
*/
unsafe_get_user(head, uc_head, efault);
if (unlikely(head))
goto die;
/* abort_ip - 4 is >= 0. See abort_ip check above */
uc_sig = (u32 __user *)(unsigned long)(abort_ip - sizeof(*uc_sig));
unsafe_get_user(usig, uc_sig, efault);
if (unlikely(usig != t->rseq.sig))
goto die;
/* rseq_event.user_irq is only valid if CONFIG_GENERIC_IRQ_ENTRY=y */
if (IS_ENABLED(CONFIG_GENERIC_IRQ_ENTRY)) {
/* If not in interrupt from user context, let it die */
if (unlikely(!t->rseq.event.user_irq))
goto die;
}
unsafe_put_user(0ULL, &t->rseq.usrptr->rseq_cs, efault);
instruction_pointer_set(regs, (unsigned long)abort_ip);
rseq_stat_inc(rseq_stats.fixup);
break;
clear:
unsafe_put_user(0ULL, &t->rseq.usrptr->rseq_cs, efault);
rseq_stat_inc(rseq_stats.clear);
abort_ip = 0ULL;
}
if (unlikely(abort_ip))
rseq_trace_ip_fixup(ip, start_ip, offset, abort_ip);
return true;
die:
t->rseq.event.fatal = true;
efault:
return false;
}
/*
* On debug kernels validate that user space did not mess with it if the
* debug branch is enabled.
*/
bool rseq_debug_validate_ids(struct task_struct *t)
{
struct rseq __user *rseq = t->rseq.usrptr;
u32 cpu_id, uval, node_id;
/*
* On the first exit after registering the rseq region CPU ID is
* RSEQ_CPU_ID_UNINITIALIZED and node_id in user space is 0!
*/
node_id = t->rseq.ids.cpu_id != RSEQ_CPU_ID_UNINITIALIZED ?
cpu_to_node(t->rseq.ids.cpu_id) : 0;
scoped_user_read_access(rseq, efault) {
unsafe_get_user(cpu_id, &rseq->cpu_id_start, efault);
if (cpu_id != t->rseq.ids.cpu_id)
goto die;
unsafe_get_user(uval, &rseq->cpu_id, efault);
if (uval != cpu_id)
goto die;
unsafe_get_user(uval, &rseq->node_id, efault);
if (uval != node_id)
goto die;
unsafe_get_user(uval, &rseq->mm_cid, efault);
if (uval != t->rseq.ids.mm_cid)
goto die;
}
return true;
die:
t->rseq.event.fatal = true;
efault:
return false;
}
#endif /* RSEQ_BUILD_SLOW_PATH */
/*
* This only ensures that abort_ip is in the user address space and
* validates that it is preceded by the signature.
*
* No other sanity checks are done here, that's what the debug code is for.
*/
static rseq_inline bool
rseq_update_user_cs(struct task_struct *t, struct pt_regs *regs, unsigned long csaddr)
{
struct rseq_cs __user *ucs = (struct rseq_cs __user *)(unsigned long)csaddr;
unsigned long ip = instruction_pointer(regs);
unsigned long tasksize = TASK_SIZE;
u64 start_ip, abort_ip, offset;
u32 usig, __user *uc_sig;
rseq_stat_inc(rseq_stats.cs);
if (unlikely(csaddr >= tasksize)) {
t->rseq.event.fatal = true;
return false;
}
if (static_branch_unlikely(&rseq_debug_enabled))
return rseq_debug_update_user_cs(t, regs, csaddr);
scoped_user_rw_access(ucs, efault) {
unsafe_get_user(start_ip, &ucs->start_ip, efault);
unsafe_get_user(offset, &ucs->post_commit_offset, efault);
unsafe_get_user(abort_ip, &ucs->abort_ip, efault);
/*
* No sanity checks. If user space screwed it up, it can
* keep the pieces. That's what debug code is for.
*
* If outside, just clear the critical section.
*/
if (ip - start_ip >= offset)
goto clear;
/*
* Two requirements for @abort_ip:
* - Must be in user space as x86 IRET would happily return to
* the kernel.
* - The four bytes preceding the instruction at @abort_ip must
* contain the signature.
*
* The latter protects against the following attack vector:
*
* An attacker with limited abilities to write, creates a critical
* section descriptor, sets the abort IP to a library function or
* some other ROP gadget and stores the address of the descriptor
* in TLS::rseq::rseq_cs. An RSEQ abort would then evade ROP
* protection.
*/
if (unlikely(abort_ip >= tasksize || abort_ip < sizeof(*uc_sig)))
goto die;
/* The address is guaranteed to be >= 0 and < TASK_SIZE */
uc_sig = (u32 __user *)(unsigned long)(abort_ip - sizeof(*uc_sig));
unsafe_get_user(usig, uc_sig, efault);
if (unlikely(usig != t->rseq.sig))
goto die;
/* Invalidate the critical section */
unsafe_put_user(0ULL, &t->rseq.usrptr->rseq_cs, efault);
/* Update the instruction pointer */
instruction_pointer_set(regs, (unsigned long)abort_ip);
rseq_stat_inc(rseq_stats.fixup);
break;
clear:
unsafe_put_user(0ULL, &t->rseq.usrptr->rseq_cs, efault);
rseq_stat_inc(rseq_stats.clear);
abort_ip = 0ULL;
}
if (unlikely(abort_ip))
rseq_trace_ip_fixup(ip, start_ip, offset, abort_ip);
return true;
die:
t->rseq.event.fatal = true;
efault:
return false;
}
/*
* Updates CPU ID, Node ID and MM CID and reads the critical section
* address, when @csaddr != NULL. This allows to put the ID update and the
* read under the same uaccess region to spare a separate begin/end.
*
* As this is either invoked from a C wrapper with @csaddr = NULL or from
* the fast path code with a valid pointer, a clever compiler should be
* able to optimize the read out. Spares a duplicate implementation.
*
* Returns true, if the operation was successful, false otherwise.
*
* In the failure case task::rseq_event::fatal is set when invalid data
* was found on debug kernels. It's clear when the failure was an unresolved page
* fault.
*
* If inlined into the exit to user path with interrupts disabled, the
* caller has to protect against page faults with pagefault_disable().
*
* In preemptible task context this would be counterproductive as the page
* faults could not be fully resolved. As a consequence unresolved page
* faults in task context are fatal too.
*/
static rseq_inline
bool rseq_set_ids_get_csaddr(struct task_struct *t, struct rseq_ids *ids,
u32 node_id, u64 *csaddr)
{
struct rseq __user *rseq = t->rseq.usrptr;
if (static_branch_unlikely(&rseq_debug_enabled)) {
if (!rseq_debug_validate_ids(t))
return false;
}
scoped_user_rw_access(rseq, efault) {
unsafe_put_user(ids->cpu_id, &rseq->cpu_id_start, efault);
unsafe_put_user(ids->cpu_id, &rseq->cpu_id, efault);
unsafe_put_user(node_id, &rseq->node_id, efault);
unsafe_put_user(ids->mm_cid, &rseq->mm_cid, efault);
if (csaddr)
unsafe_get_user(*csaddr, &rseq->rseq_cs, efault);
}
/* Cache the new values */
t->rseq.ids.cpu_cid = ids->cpu_cid;
rseq_stat_inc(rseq_stats.ids);
rseq_trace_update(t, ids);
return true;
efault:
return false;
}
/*
* Update user space with new IDs and conditionally check whether the task
* is in a critical section.
*/
static rseq_inline bool rseq_update_usr(struct task_struct *t, struct pt_regs *regs,
struct rseq_ids *ids, u32 node_id)
{
u64 csaddr;
if (!rseq_set_ids_get_csaddr(t, ids, node_id, &csaddr))
return false;
/*
* On architectures which utilize the generic entry code this
* allows to skip the critical section when the entry was not from
* a user space interrupt, unless debug mode is enabled.
*/
if (IS_ENABLED(CONFIG_GENERIC_IRQ_ENTRY)) {
if (!static_branch_unlikely(&rseq_debug_enabled)) {
if (likely(!t->rseq.event.user_irq))
return true;
}
}
if (likely(!csaddr))
return true;
/* Sigh, this really needs to do work */
return rseq_update_user_cs(t, regs, csaddr);
}
/*
* If you want to use this then convert your architecture to the generic
* entry code. I'm tired of building workarounds for people who can't be
* bothered to make the maintenance of generic infrastructure less
* burdensome. Just sucking everything into the architecture code and
* thereby making others chase the horrible hacks and keep them working is
* neither acceptable nor sustainable.
*/
#ifdef CONFIG_GENERIC_ENTRY
/*
* This is inlined into the exit path because:
*
* 1) It's a one time comparison in the fast path when there is no event to
* handle
*
* 2) The access to the user space rseq memory (TLS) is unlikely to fault
* so the straight inline operation is:
*
* - Four 32-bit stores only if CPU ID/ MM CID need to be updated
* - One 64-bit load to retrieve the critical section address
*
* 3) In the unlikely case that the critical section address is != NULL:
*
* - One 64-bit load to retrieve the start IP
* - One 64-bit load to retrieve the offset for calculating the end
* - One 64-bit load to retrieve the abort IP
* - One 64-bit load to retrieve the signature
* - One store to clear the critical section address
*
* The non-debug case implements only the minimal required checking. It
* provides protection against a rogue abort IP in kernel space, which
* would be exploitable at least on x86, and also against a rogue CS
* descriptor by checking the signature at the abort IP. Any fallout from
* invalid critical section descriptors is a user space problem. The debug
* case provides the full set of checks and terminates the task if a
* condition is not met.
*
* In case of a fault or an invalid value, this sets TIF_NOTIFY_RESUME and
* tells the caller to loop back into exit_to_user_mode_loop(). The rseq
* slow path there will handle the failure.
*/
static __always_inline bool rseq_exit_user_update(struct pt_regs *regs, struct task_struct *t)
{
/*
* Page faults need to be disabled as this is called with
* interrupts disabled
*/
guard(pagefault)();
if (likely(!t->rseq.event.ids_changed)) {
struct rseq __user *rseq = t->rseq.usrptr;
/*
* If IDs have not changed rseq_event::user_irq must be true
* See rseq_sched_switch_event().
*/
u64 csaddr;
if (unlikely(get_user_inline(csaddr, &rseq->rseq_cs)))
return false;
if (static_branch_unlikely(&rseq_debug_enabled) || unlikely(csaddr)) {
if (unlikely(!rseq_update_user_cs(t, regs, csaddr)))
return false;
}
return true;
}
struct rseq_ids ids = {
.cpu_id = task_cpu(t),
.mm_cid = task_mm_cid(t),
};
u32 node_id = cpu_to_node(ids.cpu_id);
return rseq_update_usr(t, regs, &ids, node_id);
}
static __always_inline bool __rseq_exit_to_user_mode_restart(struct pt_regs *regs)
{
struct task_struct *t = current;
/*
* If the task did not go through schedule or got the flag enforced
* by the rseq syscall or execve, then nothing to do here.
*
* CPU ID and MM CID can only change when going through a context
* switch.
*
* rseq_sched_switch_event() sets the rseq_event::sched_switch bit
* only when rseq_event::has_rseq is true. That conditional is
* required to avoid setting the TIF bit if RSEQ is not registered
* for a task. rseq_event::sched_switch is cleared when RSEQ is
* unregistered by a task so it's sufficient to check for the
* sched_switch bit alone.
*
* A sane compiler requires three instructions for the nothing to do
* case including clearing the events, but your mileage might vary.
*/
if (unlikely((t->rseq.event.sched_switch))) {
rseq_stat_inc(rseq_stats.fastpath);
if (unlikely(!rseq_exit_user_update(regs, t)))
return true;
}
/* Clear state so next entry starts from a clean slate */
t->rseq.event.events = 0;
return false;
}
/* Required to allow conversion to GENERIC_ENTRY w/o GENERIC_TIF_BITS */
#ifdef CONFIG_HAVE_GENERIC_TIF_BITS
static __always_inline bool test_tif_rseq(unsigned long ti_work)
{
return ti_work & _TIF_RSEQ;
}
static __always_inline void clear_tif_rseq(void)
{
static_assert(TIF_RSEQ != TIF_NOTIFY_RESUME);
clear_thread_flag(TIF_RSEQ);
}
#else
static __always_inline bool test_tif_rseq(unsigned long ti_work) { return true; }
static __always_inline void clear_tif_rseq(void) { }
#endif
static __always_inline bool
rseq_exit_to_user_mode_restart(struct pt_regs *regs, unsigned long ti_work)
{
if (likely(!test_tif_rseq(ti_work)))
return false;
if (unlikely(__rseq_exit_to_user_mode_restart(regs))) {
current->rseq.event.slowpath = true;
set_tsk_thread_flag(current, TIF_NOTIFY_RESUME);
return true;
}
clear_tif_rseq();
return false;
}
#else /* CONFIG_GENERIC_ENTRY */
static inline bool rseq_exit_to_user_mode_restart(struct pt_regs *regs, unsigned long ti_work)
{
return false;
}
#endif /* !CONFIG_GENERIC_ENTRY */
static __always_inline void rseq_syscall_exit_to_user_mode(void)
{
struct rseq_event *ev = &current->rseq.event;
rseq_stat_inc(rseq_stats.exit);
/* Needed to remove the store for the !lockdep case */
if (IS_ENABLED(CONFIG_LOCKDEP)) {
WARN_ON_ONCE(ev->sched_switch);
ev->events = 0;
}
}
static __always_inline void rseq_irqentry_exit_to_user_mode(void)
{
struct rseq_event *ev = &current->rseq.event;
rseq_stat_inc(rseq_stats.exit);
lockdep_assert_once(!ev->sched_switch);
/*
* Ensure that event (especially user_irq) is cleared when the
* interrupt did not result in a schedule and therefore the
* rseq processing could not clear it.
*/
ev->events = 0;
}
/* Required to keep ARM64 working */
static __always_inline void rseq_exit_to_user_mode_legacy(void)
{
struct rseq_event *ev = &current->rseq.event;
rseq_stat_inc(rseq_stats.exit);
if (static_branch_unlikely(&rseq_debug_enabled))
WARN_ON_ONCE(ev->sched_switch);
/*
* Ensure that event (especially user_irq) is cleared when the
* interrupt did not result in a schedule and therefore the
* rseq processing did not clear it.
*/
ev->events = 0;
}
void __rseq_debug_syscall_return(struct pt_regs *regs);
static inline void rseq_debug_syscall_return(struct pt_regs *regs)
{
if (static_branch_unlikely(&rseq_debug_enabled))
__rseq_debug_syscall_return(regs);
}
#else /* CONFIG_RSEQ */
static inline void rseq_note_user_irq_entry(void) { }
static inline bool rseq_exit_to_user_mode_restart(struct pt_regs *regs, unsigned long ti_work)
{
return false;
}
static inline void rseq_syscall_exit_to_user_mode(void) { }
static inline void rseq_irqentry_exit_to_user_mode(void) { }
static inline void rseq_exit_to_user_mode_legacy(void) { }
static inline void rseq_debug_syscall_return(struct pt_regs *regs) { }
#endif /* !CONFIG_RSEQ */
#endif /* _LINUX_RSEQ_ENTRY_H */