1
0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2026-01-11 09:00:12 +00:00
Linus Torvalds 509d3f4584 Significant patch series in this pull request:
- The 6 patch series "panic: sys_info: Refactor and fix a potential
   issue" from Andy Shevchenko fixes a build issue and does some cleanup in
   ib/sys_info.c.
 
 - The 9 patch series "Implement mul_u64_u64_div_u64_roundup()" from
   David Laight enhances the 64-bit math code on behalf of a PWM driver and
   beefs up the test module for these library functions.
 
 - The 2 patch series "scripts/gdb/symbols: make BPF debug info available
   to GDB" from Ilya Leoshkevich makes BPF symbol names, sizes, and line
   numbers available to the GDB debugger.
 
 - The 4 patch series "Enable hung_task and lockup cases to dump system
   info on demand" from Feng Tang adds a sysctl which can be used to cause
   additional info dumping when the hung-task and lockup detectors fire.
 
 - The 6 patch series "lib/base64: add generic encoder/decoder, migrate
   users" from Kuan-Wei Chiu adds a general base64 encoder/decoder to lib/
   and migrates several users away from their private implementations.
 
 - The 2 patch series "rbree: inline rb_first() and rb_last()" from Eric
   Dumazet makes TCP a little faster.
 
 - The 9 patch series "liveupdate: Rework KHO for in-kernel users" from
   Pasha Tatashin reworks the KEXEC Handover interfaces in preparation for
   Live Update Orchestrator (LUO), and possibly for other future clients.
 
 - The 13 patch series "kho: simplify state machine and enable dynamic
   updates" from Pasha Tatashin increases the flexibility of KEXEC
   Handover.  Also preparation for LUO.
 
 - The 18 patch series "Live Update Orchestrator" from Pasha Tatashin is
   a major new feature targeted at cloud environments.  Quoting the [0/N]:
 
     This series introduces the Live Update Orchestrator, a kernel subsystem
     designed to facilitate live kernel updates using a kexec-based reboot.
     This capability is critical for cloud environments, allowing hypervisors
     to be updated with minimal downtime for running virtual machines.  LUO
     achieves this by preserving the state of selected resources, such as
     memory, devices and their dependencies, across the kernel transition.
 
     As a key feature, this series includes support for preserving memfd file
     descriptors, which allows critical in-memory data, such as guest RAM or
     any other large memory region, to be maintained in RAM across the kexec
     reboot.
 
   Mike Rappaport merits a mention here, for his extensive review and
   testing work.
 
 - The 3 patch series "kexec: reorganize kexec and kdump sysfs" from
   Sourabh Jain moves the kexec and kdump sysfs entries from /sys/kernel/
   to /sys/kernel/kexec/ and adds back-compatibility symlinks which can
   hopefully be removed one day.
 
 - The 2 patch series "kho: fixes for vmalloc restoration" from Mike
   Rapoport fixes a BUG which was being hit during KHO restoration of
   vmalloc() regions.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCaTSAkQAKCRDdBJ7gKXxA
 jrkiAP9QKfsRv46XZaM5raScjY1ayjP+gqb2rgt6BQ/gZvb2+wD/cPAYOR6BiX52
 n0pVpQmG5P/KyOmpLztn96ejL4heKwQ=
 =JY96
 -----END PGP SIGNATURE-----

Merge tag 'mm-nonmm-stable-2025-12-06-11-14' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull non-MM updates from Andrew Morton:

 - "panic: sys_info: Refactor and fix a potential issue" (Andy Shevchenko)
   fixes a build issue and does some cleanup in ib/sys_info.c

 - "Implement mul_u64_u64_div_u64_roundup()" (David Laight)
   enhances the 64-bit math code on behalf of a PWM driver and beefs up
   the test module for these library functions

 - "scripts/gdb/symbols: make BPF debug info available to GDB" (Ilya Leoshkevich)
   makes BPF symbol names, sizes, and line numbers available to the GDB
   debugger

 - "Enable hung_task and lockup cases to dump system info on demand" (Feng Tang)
   adds a sysctl which can be used to cause additional info dumping when
   the hung-task and lockup detectors fire

 - "lib/base64: add generic encoder/decoder, migrate users" (Kuan-Wei Chiu)
   adds a general base64 encoder/decoder to lib/ and migrates several
   users away from their private implementations

 - "rbree: inline rb_first() and rb_last()" (Eric Dumazet)
   makes TCP a little faster

 - "liveupdate: Rework KHO for in-kernel users" (Pasha Tatashin)
   reworks the KEXEC Handover interfaces in preparation for Live Update
   Orchestrator (LUO), and possibly for other future clients

 - "kho: simplify state machine and enable dynamic updates" (Pasha Tatashin)
   increases the flexibility of KEXEC Handover. Also preparation for LUO

 - "Live Update Orchestrator" (Pasha Tatashin)
   is a major new feature targeted at cloud environments. Quoting the
   cover letter:

      This series introduces the Live Update Orchestrator, a kernel
      subsystem designed to facilitate live kernel updates using a
      kexec-based reboot. This capability is critical for cloud
      environments, allowing hypervisors to be updated with minimal
      downtime for running virtual machines. LUO achieves this by
      preserving the state of selected resources, such as memory,
      devices and their dependencies, across the kernel transition.

      As a key feature, this series includes support for preserving
      memfd file descriptors, which allows critical in-memory data, such
      as guest RAM or any other large memory region, to be maintained in
      RAM across the kexec reboot.

   Mike Rappaport merits a mention here, for his extensive review and
   testing work.

 - "kexec: reorganize kexec and kdump sysfs" (Sourabh Jain)
   moves the kexec and kdump sysfs entries from /sys/kernel/ to
   /sys/kernel/kexec/ and adds back-compatibility symlinks which can
   hopefully be removed one day

 - "kho: fixes for vmalloc restoration" (Mike Rapoport)
   fixes a BUG which was being hit during KHO restoration of vmalloc()
   regions

* tag 'mm-nonmm-stable-2025-12-06-11-14' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (139 commits)
  calibrate: update header inclusion
  Reinstate "resource: avoid unnecessary lookups in find_next_iomem_res()"
  vmcoreinfo: track and log recoverable hardware errors
  kho: fix restoring of contiguous ranges of order-0 pages
  kho: kho_restore_vmalloc: fix initialization of pages array
  MAINTAINERS: TPM DEVICE DRIVER: update the W-tag
  init: replace simple_strtoul with kstrtoul to improve lpj_setup
  KHO: fix boot failure due to kmemleak access to non-PRESENT pages
  Documentation/ABI: new kexec and kdump sysfs interface
  Documentation/ABI: mark old kexec sysfs deprecated
  kexec: move sysfs entries to /sys/kernel/kexec
  test_kho: always print restore status
  kho: free chunks using free_page() instead of kfree()
  selftests/liveupdate: add kexec test for multiple and empty sessions
  selftests/liveupdate: add simple kexec-based selftest for LUO
  selftests/liveupdate: add userspace API selftests
  docs: add documentation for memfd preservation via LUO
  mm: memfd_luo: allow preserving memfd
  liveupdate: luo_file: add private argument to store runtime state
  mm: shmem: export some functions to internal.h
  ...
2025-12-06 14:01:20 -08:00

887 lines
29 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_UACCESS_H__
#define __LINUX_UACCESS_H__
#include <linux/cleanup.h>
#include <linux/fault-inject-usercopy.h>
#include <linux/instrumented.h>
#include <linux/minmax.h>
#include <linux/nospec.h>
#include <linux/sched.h>
#include <linux/ucopysize.h>
#include <asm/uaccess.h>
/*
* Architectures that support memory tagging (assigning tags to memory regions,
* embedding these tags into addresses that point to these memory regions, and
* checking that the memory and the pointer tags match on memory accesses)
* redefine this macro to strip tags from pointers.
*
* Passing down mm_struct allows to define untagging rules on per-process
* basis.
*
* It's defined as noop for architectures that don't support memory tagging.
*/
#ifndef untagged_addr
#define untagged_addr(addr) (addr)
#endif
#ifndef untagged_addr_remote
#define untagged_addr_remote(mm, addr) ({ \
mmap_assert_locked(mm); \
untagged_addr(addr); \
})
#endif
#ifdef masked_user_access_begin
#define can_do_masked_user_access() 1
# ifndef masked_user_write_access_begin
# define masked_user_write_access_begin masked_user_access_begin
# endif
# ifndef masked_user_read_access_begin
# define masked_user_read_access_begin masked_user_access_begin
#endif
#else
#define can_do_masked_user_access() 0
#define masked_user_access_begin(src) NULL
#define masked_user_read_access_begin(src) NULL
#define masked_user_write_access_begin(src) NULL
#define mask_user_address(src) (src)
#endif
/*
* Architectures should provide two primitives (raw_copy_{to,from}_user())
* and get rid of their private instances of copy_{to,from}_user() and
* __copy_{to,from}_user{,_inatomic}().
*
* raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and
* return the amount left to copy. They should assume that access_ok() has
* already been checked (and succeeded); they should *not* zero-pad anything.
* No KASAN or object size checks either - those belong here.
*
* Both of these functions should attempt to copy size bytes starting at from
* into the area starting at to. They must not fetch or store anything
* outside of those areas. Return value must be between 0 (everything
* copied successfully) and size (nothing copied).
*
* If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting
* at to must become equal to the bytes fetched from the corresponding area
* starting at from. All data past to + size - N must be left unmodified.
*
* If copying succeeds, the return value must be 0. If some data cannot be
* fetched, it is permitted to copy less than had been fetched; the only
* hard requirement is that not storing anything at all (i.e. returning size)
* should happen only when nothing could be copied. In other words, you don't
* have to squeeze as much as possible - it is allowed, but not necessary.
*
* For raw_copy_from_user() to always points to kernel memory and no faults
* on store should happen. Interpretation of from is affected by set_fs().
* For raw_copy_to_user() it's the other way round.
*
* Both can be inlined - it's up to architectures whether it wants to bother
* with that. They should not be used directly; they are used to implement
* the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic())
* that are used instead. Out of those, __... ones are inlined. Plain
* copy_{to,from}_user() might or might not be inlined. If you want them
* inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER.
*
* NOTE: only copy_from_user() zero-pads the destination in case of short copy.
* Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything
* at all; their callers absolutely must check the return value.
*
* Biarch ones should also provide raw_copy_in_user() - similar to the above,
* but both source and destination are __user pointers (affected by set_fs()
* as usual) and both source and destination can trigger faults.
*/
static __always_inline __must_check unsigned long
__copy_from_user_inatomic(void *to, const void __user *from, unsigned long n)
{
unsigned long res;
instrument_copy_from_user_before(to, from, n);
check_object_size(to, n, false);
res = raw_copy_from_user(to, from, n);
instrument_copy_from_user_after(to, from, n, res);
return res;
}
static __always_inline __must_check unsigned long
__copy_from_user(void *to, const void __user *from, unsigned long n)
{
unsigned long res;
might_fault();
instrument_copy_from_user_before(to, from, n);
if (should_fail_usercopy())
return n;
check_object_size(to, n, false);
res = raw_copy_from_user(to, from, n);
instrument_copy_from_user_after(to, from, n, res);
return res;
}
/**
* __copy_to_user_inatomic: - Copy a block of data into user space, with less checking.
* @to: Destination address, in user space.
* @from: Source address, in kernel space.
* @n: Number of bytes to copy.
*
* Context: User context only.
*
* Copy data from kernel space to user space. Caller must check
* the specified block with access_ok() before calling this function.
* The caller should also make sure he pins the user space address
* so that we don't result in page fault and sleep.
*/
static __always_inline __must_check unsigned long
__copy_to_user_inatomic(void __user *to, const void *from, unsigned long n)
{
if (should_fail_usercopy())
return n;
instrument_copy_to_user(to, from, n);
check_object_size(from, n, true);
return raw_copy_to_user(to, from, n);
}
static __always_inline __must_check unsigned long
__copy_to_user(void __user *to, const void *from, unsigned long n)
{
might_fault();
if (should_fail_usercopy())
return n;
instrument_copy_to_user(to, from, n);
check_object_size(from, n, true);
return raw_copy_to_user(to, from, n);
}
/*
* Architectures that #define INLINE_COPY_TO_USER use this function
* directly in the normal copy_to/from_user(), the other ones go
* through an extern _copy_to/from_user(), which expands the same code
* here.
*/
static inline __must_check unsigned long
_inline_copy_from_user(void *to, const void __user *from, unsigned long n)
{
unsigned long res = n;
might_fault();
if (should_fail_usercopy())
goto fail;
if (can_do_masked_user_access())
from = mask_user_address(from);
else {
if (!access_ok(from, n))
goto fail;
/*
* Ensure that bad access_ok() speculation will not
* lead to nasty side effects *after* the copy is
* finished:
*/
barrier_nospec();
}
instrument_copy_from_user_before(to, from, n);
res = raw_copy_from_user(to, from, n);
instrument_copy_from_user_after(to, from, n, res);
if (likely(!res))
return 0;
fail:
memset(to + (n - res), 0, res);
return res;
}
#ifndef INLINE_COPY_FROM_USER
extern __must_check unsigned long
_copy_from_user(void *, const void __user *, unsigned long);
#endif
static inline __must_check unsigned long
_inline_copy_to_user(void __user *to, const void *from, unsigned long n)
{
might_fault();
if (should_fail_usercopy())
return n;
if (access_ok(to, n)) {
instrument_copy_to_user(to, from, n);
n = raw_copy_to_user(to, from, n);
}
return n;
}
#ifndef INLINE_COPY_TO_USER
extern __must_check unsigned long
_copy_to_user(void __user *, const void *, unsigned long);
#endif
static __always_inline unsigned long __must_check
copy_from_user(void *to, const void __user *from, unsigned long n)
{
if (!check_copy_size(to, n, false))
return n;
#ifdef INLINE_COPY_FROM_USER
return _inline_copy_from_user(to, from, n);
#else
return _copy_from_user(to, from, n);
#endif
}
static __always_inline unsigned long __must_check
copy_to_user(void __user *to, const void *from, unsigned long n)
{
if (!check_copy_size(from, n, true))
return n;
#ifdef INLINE_COPY_TO_USER
return _inline_copy_to_user(to, from, n);
#else
return _copy_to_user(to, from, n);
#endif
}
#ifndef copy_mc_to_kernel
/*
* Without arch opt-in this generic copy_mc_to_kernel() will not handle
* #MC (or arch equivalent) during source read.
*/
static inline unsigned long __must_check
copy_mc_to_kernel(void *dst, const void *src, size_t cnt)
{
memcpy(dst, src, cnt);
return 0;
}
#endif
static __always_inline void pagefault_disabled_inc(void)
{
current->pagefault_disabled++;
}
static __always_inline void pagefault_disabled_dec(void)
{
current->pagefault_disabled--;
}
/*
* These routines enable/disable the pagefault handler. If disabled, it will
* not take any locks and go straight to the fixup table.
*
* User access methods will not sleep when called from a pagefault_disabled()
* environment.
*/
static inline void pagefault_disable(void)
{
pagefault_disabled_inc();
/*
* make sure to have issued the store before a pagefault
* can hit.
*/
barrier();
}
static inline void pagefault_enable(void)
{
/*
* make sure to issue those last loads/stores before enabling
* the pagefault handler again.
*/
barrier();
pagefault_disabled_dec();
}
/*
* Is the pagefault handler disabled? If so, user access methods will not sleep.
*/
static inline bool pagefault_disabled(void)
{
return current->pagefault_disabled != 0;
}
/*
* The pagefault handler is in general disabled by pagefault_disable() or
* when in irq context (via in_atomic()).
*
* This function should only be used by the fault handlers. Other users should
* stick to pagefault_disabled().
* Please NEVER use preempt_disable() to disable the fault handler. With
* !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled.
* in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT.
*/
#define faulthandler_disabled() (pagefault_disabled() || in_atomic())
DEFINE_LOCK_GUARD_0(pagefault, pagefault_disable(), pagefault_enable())
#ifndef CONFIG_ARCH_HAS_SUBPAGE_FAULTS
/**
* probe_subpage_writeable: probe the user range for write faults at sub-page
* granularity (e.g. arm64 MTE)
* @uaddr: start of address range
* @size: size of address range
*
* Returns 0 on success, the number of bytes not probed on fault.
*
* It is expected that the caller checked for the write permission of each
* page in the range either by put_user() or GUP. The architecture port can
* implement a more efficient get_user() probing if the same sub-page faults
* are triggered by either a read or a write.
*/
static inline size_t probe_subpage_writeable(char __user *uaddr, size_t size)
{
return 0;
}
#endif /* CONFIG_ARCH_HAS_SUBPAGE_FAULTS */
#ifndef ARCH_HAS_NOCACHE_UACCESS
static inline __must_check unsigned long
__copy_from_user_inatomic_nocache(void *to, const void __user *from,
unsigned long n)
{
return __copy_from_user_inatomic(to, from, n);
}
#endif /* ARCH_HAS_NOCACHE_UACCESS */
extern __must_check int check_zeroed_user(const void __user *from, size_t size);
/**
* copy_struct_from_user: copy a struct from userspace
* @dst: Destination address, in kernel space. This buffer must be @ksize
* bytes long.
* @ksize: Size of @dst struct.
* @src: Source address, in userspace.
* @usize: (Alleged) size of @src struct.
*
* Copies a struct from userspace to kernel space, in a way that guarantees
* backwards-compatibility for struct syscall arguments (as long as future
* struct extensions are made such that all new fields are *appended* to the
* old struct, and zeroed-out new fields have the same meaning as the old
* struct).
*
* @ksize is just sizeof(*dst), and @usize should've been passed by userspace.
* The recommended usage is something like the following:
*
* SYSCALL_DEFINE2(foobar, const struct foo __user *, uarg, size_t, usize)
* {
* int err;
* struct foo karg = {};
*
* if (usize > PAGE_SIZE)
* return -E2BIG;
* if (usize < FOO_SIZE_VER0)
* return -EINVAL;
*
* err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
* if (err)
* return err;
*
* // ...
* }
*
* There are three cases to consider:
* * If @usize == @ksize, then it's copied verbatim.
* * If @usize < @ksize, then the userspace has passed an old struct to a
* newer kernel. The rest of the trailing bytes in @dst (@ksize - @usize)
* are to be zero-filled.
* * If @usize > @ksize, then the userspace has passed a new struct to an
* older kernel. The trailing bytes unknown to the kernel (@usize - @ksize)
* are checked to ensure they are zeroed, otherwise -E2BIG is returned.
*
* Returns (in all cases, some data may have been copied):
* * -E2BIG: (@usize > @ksize) and there are non-zero trailing bytes in @src.
* * -EFAULT: access to userspace failed.
*/
static __always_inline __must_check int
copy_struct_from_user(void *dst, size_t ksize, const void __user *src,
size_t usize)
{
size_t size = min(ksize, usize);
size_t rest = max(ksize, usize) - size;
/* Double check if ksize is larger than a known object size. */
if (WARN_ON_ONCE(ksize > __builtin_object_size(dst, 1)))
return -E2BIG;
/* Deal with trailing bytes. */
if (usize < ksize) {
memset(dst + size, 0, rest);
} else if (usize > ksize) {
int ret = check_zeroed_user(src + size, rest);
if (ret <= 0)
return ret ?: -E2BIG;
}
/* Copy the interoperable parts of the struct. */
if (copy_from_user(dst, src, size))
return -EFAULT;
return 0;
}
/**
* copy_struct_to_user: copy a struct to userspace
* @dst: Destination address, in userspace. This buffer must be @ksize
* bytes long.
* @usize: (Alleged) size of @dst struct.
* @src: Source address, in kernel space.
* @ksize: Size of @src struct.
* @ignored_trailing: Set to %true if there was a non-zero byte in @src that
* userspace cannot see because they are using an smaller struct.
*
* Copies a struct from kernel space to userspace, in a way that guarantees
* backwards-compatibility for struct syscall arguments (as long as future
* struct extensions are made such that all new fields are *appended* to the
* old struct, and zeroed-out new fields have the same meaning as the old
* struct).
*
* Some syscalls may wish to make sure that userspace knows about everything in
* the struct, and if there is a non-zero value that userspce doesn't know
* about, they want to return an error (such as -EMSGSIZE) or have some other
* fallback (such as adding a "you're missing some information" flag). If
* @ignored_trailing is non-%NULL, it will be set to %true if there was a
* non-zero byte that could not be copied to userspace (ie. was past @usize).
*
* While unconditionally returning an error in this case is the simplest
* solution, for maximum backward compatibility you should try to only return
* -EMSGSIZE if the user explicitly requested the data that couldn't be copied.
* Note that structure sizes can change due to header changes and simple
* recompilations without code changes(!), so if you care about
* @ignored_trailing you probably want to make sure that any new field data is
* associated with a flag. Otherwise you might assume that a program knows
* about data it does not.
*
* @ksize is just sizeof(*src), and @usize should've been passed by userspace.
* The recommended usage is something like the following:
*
* SYSCALL_DEFINE2(foobar, struct foo __user *, uarg, size_t, usize)
* {
* int err;
* bool ignored_trailing;
* struct foo karg = {};
*
* if (usize > PAGE_SIZE)
* return -E2BIG;
* if (usize < FOO_SIZE_VER0)
* return -EINVAL;
*
* // ... modify karg somehow ...
*
* err = copy_struct_to_user(uarg, usize, &karg, sizeof(karg),
* &ignored_trailing);
* if (err)
* return err;
* if (ignored_trailing)
* return -EMSGSIZE:
*
* // ...
* }
*
* There are three cases to consider:
* * If @usize == @ksize, then it's copied verbatim.
* * If @usize < @ksize, then the kernel is trying to pass userspace a newer
* struct than it supports. Thus we only copy the interoperable portions
* (@usize) and ignore the rest (but @ignored_trailing is set to %true if
* any of the trailing (@ksize - @usize) bytes are non-zero).
* * If @usize > @ksize, then the kernel is trying to pass userspace an older
* struct than userspace supports. In order to make sure the
* unknown-to-the-kernel fields don't contain garbage values, we zero the
* trailing (@usize - @ksize) bytes.
*
* Returns (in all cases, some data may have been copied):
* * -EFAULT: access to userspace failed.
*/
static __always_inline __must_check int
copy_struct_to_user(void __user *dst, size_t usize, const void *src,
size_t ksize, bool *ignored_trailing)
{
size_t size = min(ksize, usize);
size_t rest = max(ksize, usize) - size;
/* Double check if ksize is larger than a known object size. */
if (WARN_ON_ONCE(ksize > __builtin_object_size(src, 1)))
return -E2BIG;
/* Deal with trailing bytes. */
if (usize > ksize) {
if (clear_user(dst + size, rest))
return -EFAULT;
}
if (ignored_trailing)
*ignored_trailing = ksize < usize &&
memchr_inv(src + size, 0, rest) != NULL;
/* Copy the interoperable parts of the struct. */
if (copy_to_user(dst, src, size))
return -EFAULT;
return 0;
}
bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size);
long copy_from_kernel_nofault(void *dst, const void *src, size_t size);
long notrace copy_to_kernel_nofault(void *dst, const void *src, size_t size);
long copy_from_user_nofault(void *dst, const void __user *src, size_t size);
long notrace copy_to_user_nofault(void __user *dst, const void *src,
size_t size);
long strncpy_from_kernel_nofault(char *dst, const void *unsafe_addr,
long count);
long strncpy_from_user_nofault(char *dst, const void __user *unsafe_addr,
long count);
long strnlen_user_nofault(const void __user *unsafe_addr, long count);
#ifdef arch_get_kernel_nofault
/*
* Wrap the architecture implementation so that @label can be outside of a
* cleanup() scope. A regular C goto works correctly, but ASM goto does
* not. Clang rejects such an attempt, but GCC silently emits buggy code.
*/
#define __get_kernel_nofault(dst, src, type, label) \
do { \
__label__ local_label; \
arch_get_kernel_nofault(dst, src, type, local_label); \
if (0) { \
local_label: \
goto label; \
} \
} while (0)
#define __put_kernel_nofault(dst, src, type, label) \
do { \
__label__ local_label; \
arch_put_kernel_nofault(dst, src, type, local_label); \
if (0) { \
local_label: \
goto label; \
} \
} while (0)
#elif !defined(__get_kernel_nofault) /* arch_get_kernel_nofault */
#define __get_kernel_nofault(dst, src, type, label) \
do { \
type __user *p = (type __force __user *)(src); \
type data; \
if (__get_user(data, p)) \
goto label; \
*(type *)dst = data; \
} while (0)
#define __put_kernel_nofault(dst, src, type, label) \
do { \
type __user *p = (type __force __user *)(dst); \
type data = *(type *)src; \
if (__put_user(data, p)) \
goto label; \
} while (0)
#endif /* !__get_kernel_nofault */
/**
* get_kernel_nofault(): safely attempt to read from a location
* @val: read into this variable
* @ptr: address to read from
*
* Returns 0 on success, or -EFAULT.
*/
#define get_kernel_nofault(val, ptr) ({ \
const typeof(val) *__gk_ptr = (ptr); \
copy_from_kernel_nofault(&(val), __gk_ptr, sizeof(val));\
})
#ifdef user_access_begin
#ifdef arch_unsafe_get_user
/*
* Wrap the architecture implementation so that @label can be outside of a
* cleanup() scope. A regular C goto works correctly, but ASM goto does
* not. Clang rejects such an attempt, but GCC silently emits buggy code.
*
* Some architectures use internal local labels already, but this extra
* indirection here is harmless because the compiler optimizes it out
* completely in any case. This construct just ensures that the ASM GOTO
* target is always in the local scope. The C goto 'label' works correctly
* when leaving a cleanup() scope.
*/
#define unsafe_get_user(x, ptr, label) \
do { \
__label__ local_label; \
arch_unsafe_get_user(x, ptr, local_label); \
if (0) { \
local_label: \
goto label; \
} \
} while (0)
#define unsafe_put_user(x, ptr, label) \
do { \
__label__ local_label; \
arch_unsafe_put_user(x, ptr, local_label); \
if (0) { \
local_label: \
goto label; \
} \
} while (0)
#endif /* arch_unsafe_get_user */
#else /* user_access_begin */
#define user_access_begin(ptr,len) access_ok(ptr, len)
#define user_access_end() do { } while (0)
#define unsafe_op_wrap(op, err) do { if (unlikely(op)) goto err; } while (0)
#define unsafe_get_user(x,p,e) unsafe_op_wrap(__get_user(x,p),e)
#define unsafe_put_user(x,p,e) unsafe_op_wrap(__put_user(x,p),e)
#define unsafe_copy_to_user(d,s,l,e) unsafe_op_wrap(__copy_to_user(d,s,l),e)
#define unsafe_copy_from_user(d,s,l,e) unsafe_op_wrap(__copy_from_user(d,s,l),e)
static inline unsigned long user_access_save(void) { return 0UL; }
static inline void user_access_restore(unsigned long flags) { }
#endif /* !user_access_begin */
#ifndef user_write_access_begin
#define user_write_access_begin user_access_begin
#define user_write_access_end user_access_end
#endif
#ifndef user_read_access_begin
#define user_read_access_begin user_access_begin
#define user_read_access_end user_access_end
#endif
/* Define RW variant so the below _mode macro expansion works */
#define masked_user_rw_access_begin(u) masked_user_access_begin(u)
#define user_rw_access_begin(u, s) user_access_begin(u, s)
#define user_rw_access_end() user_access_end()
/* Scoped user access */
#define USER_ACCESS_GUARD(_mode) \
static __always_inline void __user * \
class_user_##_mode##_begin(void __user *ptr) \
{ \
return ptr; \
} \
\
static __always_inline void \
class_user_##_mode##_end(void __user *ptr) \
{ \
user_##_mode##_access_end(); \
} \
\
DEFINE_CLASS(user_ ##_mode## _access, void __user *, \
class_user_##_mode##_end(_T), \
class_user_##_mode##_begin(ptr), void __user *ptr) \
\
static __always_inline class_user_##_mode##_access_t \
class_user_##_mode##_access_ptr(void __user *scope) \
{ \
return scope; \
}
USER_ACCESS_GUARD(read)
USER_ACCESS_GUARD(write)
USER_ACCESS_GUARD(rw)
#undef USER_ACCESS_GUARD
/**
* __scoped_user_access_begin - Start a scoped user access
* @mode: The mode of the access class (read, write, rw)
* @uptr: The pointer to access user space memory
* @size: Size of the access
* @elbl: Error label to goto when the access region is rejected
*
* Internal helper for __scoped_user_access(). Don't use directly.
*/
#define __scoped_user_access_begin(mode, uptr, size, elbl) \
({ \
typeof(uptr) __retptr; \
\
if (can_do_masked_user_access()) { \
__retptr = masked_user_##mode##_access_begin(uptr); \
} else { \
__retptr = uptr; \
if (!user_##mode##_access_begin(uptr, size)) \
goto elbl; \
} \
__retptr; \
})
/**
* __scoped_user_access - Open a scope for user access
* @mode: The mode of the access class (read, write, rw)
* @uptr: The pointer to access user space memory
* @size: Size of the access
* @elbl: Error label to goto when the access region is rejected. It
* must be placed outside the scope
*
* If the user access function inside the scope requires a fault label, it
* can use @elbl or a different label outside the scope, which requires
* that user access which is implemented with ASM GOTO has been properly
* wrapped. See unsafe_get_user() for reference.
*
* scoped_user_rw_access(ptr, efault) {
* unsafe_get_user(rval, &ptr->rval, efault);
* unsafe_put_user(wval, &ptr->wval, efault);
* }
* return 0;
* efault:
* return -EFAULT;
*
* The scope is internally implemented as a autoterminating nested for()
* loop, which can be left with 'return', 'break' and 'goto' at any
* point.
*
* When the scope is left user_##@_mode##_access_end() is automatically
* invoked.
*
* When the architecture supports masked user access and the access region
* which is determined by @uptr and @size is not a valid user space
* address, i.e. < TASK_SIZE, the scope sets the pointer to a faulting user
* space address and does not terminate early. This optimizes for the good
* case and lets the performance uncritical bad case go through the fault.
*
* The eventual modification of the pointer is limited to the scope.
* Outside of the scope the original pointer value is unmodified, so that
* the original pointer value is available for diagnostic purposes in an
* out of scope fault path.
*
* Nesting scoped user access into a user access scope is invalid and fails
* the build. Nesting into other guards, e.g. pagefault is safe.
*
* The masked variant does not check the size of the access and relies on a
* mapping hole (e.g. guard page) to catch an out of range pointer, the
* first access to user memory inside the scope has to be within
* @uptr ... @uptr + PAGE_SIZE - 1
*
* Don't use directly. Use scoped_masked_user_$MODE_access() instead.
*/
#define __scoped_user_access(mode, uptr, size, elbl) \
for (bool done = false; !done; done = true) \
for (void __user *_tmpptr = __scoped_user_access_begin(mode, uptr, size, elbl); \
!done; done = true) \
for (CLASS(user_##mode##_access, scope)(_tmpptr); !done; done = true) \
/* Force modified pointer usage within the scope */ \
for (const typeof(uptr) uptr = _tmpptr; !done; done = true)
/**
* scoped_user_read_access_size - Start a scoped user read access with given size
* @usrc: Pointer to the user space address to read from
* @size: Size of the access starting from @usrc
* @elbl: Error label to goto when the access region is rejected
*
* For further information see __scoped_user_access() above.
*/
#define scoped_user_read_access_size(usrc, size, elbl) \
__scoped_user_access(read, usrc, size, elbl)
/**
* scoped_user_read_access - Start a scoped user read access
* @usrc: Pointer to the user space address to read from
* @elbl: Error label to goto when the access region is rejected
*
* The size of the access starting from @usrc is determined via sizeof(*@usrc)).
*
* For further information see __scoped_user_access() above.
*/
#define scoped_user_read_access(usrc, elbl) \
scoped_user_read_access_size(usrc, sizeof(*(usrc)), elbl)
/**
* scoped_user_write_access_size - Start a scoped user write access with given size
* @udst: Pointer to the user space address to write to
* @size: Size of the access starting from @udst
* @elbl: Error label to goto when the access region is rejected
*
* For further information see __scoped_user_access() above.
*/
#define scoped_user_write_access_size(udst, size, elbl) \
__scoped_user_access(write, udst, size, elbl)
/**
* scoped_user_write_access - Start a scoped user write access
* @udst: Pointer to the user space address to write to
* @elbl: Error label to goto when the access region is rejected
*
* The size of the access starting from @udst is determined via sizeof(*@udst)).
*
* For further information see __scoped_user_access() above.
*/
#define scoped_user_write_access(udst, elbl) \
scoped_user_write_access_size(udst, sizeof(*(udst)), elbl)
/**
* scoped_user_rw_access_size - Start a scoped user read/write access with given size
* @uptr Pointer to the user space address to read from and write to
* @size: Size of the access starting from @uptr
* @elbl: Error label to goto when the access region is rejected
*
* For further information see __scoped_user_access() above.
*/
#define scoped_user_rw_access_size(uptr, size, elbl) \
__scoped_user_access(rw, uptr, size, elbl)
/**
* scoped_user_rw_access - Start a scoped user read/write access
* @uptr Pointer to the user space address to read from and write to
* @elbl: Error label to goto when the access region is rejected
*
* The size of the access starting from @uptr is determined via sizeof(*@uptr)).
*
* For further information see __scoped_user_access() above.
*/
#define scoped_user_rw_access(uptr, elbl) \
scoped_user_rw_access_size(uptr, sizeof(*(uptr)), elbl)
/**
* get_user_inline - Read user data inlined
* @val: The variable to store the value read from user memory
* @usrc: Pointer to the user space memory to read from
*
* Return: 0 if successful, -EFAULT when faulted
*
* Inlined variant of get_user(). Only use when there is a demonstrable
* performance reason.
*/
#define get_user_inline(val, usrc) \
({ \
__label__ efault; \
typeof(usrc) _tmpsrc = usrc; \
int _ret = 0; \
\
scoped_user_read_access(_tmpsrc, efault) \
unsafe_get_user(val, _tmpsrc, efault); \
if (0) { \
efault: \
_ret = -EFAULT; \
} \
_ret; \
})
/**
* put_user_inline - Write to user memory inlined
* @val: The value to write
* @udst: Pointer to the user space memory to write to
*
* Return: 0 if successful, -EFAULT when faulted
*
* Inlined variant of put_user(). Only use when there is a demonstrable
* performance reason.
*/
#define put_user_inline(val, udst) \
({ \
__label__ efault; \
typeof(udst) _tmpdst = udst; \
int _ret = 0; \
\
scoped_user_write_access(_tmpdst, efault) \
unsafe_put_user(val, _tmpdst, efault); \
if (0) { \
efault: \
_ret = -EFAULT; \
} \
_ret; \
})
#ifdef CONFIG_HARDENED_USERCOPY
void __noreturn usercopy_abort(const char *name, const char *detail,
bool to_user, unsigned long offset,
unsigned long len);
#endif
#endif /* __LINUX_UACCESS_H__ */