1
0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2026-01-11 17:10:13 +00:00
Linus Torvalds 7cd122b552 Some filesystems use a kinda-sorta controlled dentry refcount leak to pin
dentries of created objects in dcache (and undo it when removing those).
 Reference is grabbed and not released, but it's not actually _stored_
 anywhere.  That works, but it's hard to follow and verify; among other
 things, we have no way to tell _which_ of the increments is intended
 to be an unpaired one.  Worse, on removal we need to decide whether
 the reference had already been dropped, which can be non-trivial if
 that removal is on umount and we need to figure out if this dentry is
 pinned due to e.g. unlink() not done.  Usually that is handled by using
 kill_litter_super() as ->kill_sb(), but there are open-coded special
 cases of the same (consider e.g. /proc/self).
 
 Things get simpler if we introduce a new dentry flag (DCACHE_PERSISTENT)
 marking those "leaked" dentries.  Having it set claims responsibility
 for +1 in refcount.
 
 The end result this series is aiming for:
 
 * get these unbalanced dget() and dput() replaced with new primitives that
   would, in addition to adjusting refcount, set and clear persistency flag.
 * instead of having kill_litter_super() mess with removing the remaining
   "leaked" references (e.g. for all tmpfs files that hadn't been removed
   prior to umount), have the regular shrink_dcache_for_umount() strip
   DCACHE_PERSISTENT of all dentries, dropping the corresponding
   reference if it had been set.  After that kill_litter_super() becomes
   an equivalent of kill_anon_super().
 
 Doing that in a single step is not feasible - it would affect too many places
 in too many filesystems.  It has to be split into a series.
 
 This work has really started early in 2024; quite a few preliminary pieces
 have already gone into mainline.  This chunk is finally getting to the
 meat of that stuff - infrastructure and most of the conversions to it.
 
 Some pieces are still sitting in the local branches, but the bulk of
 that stuff is here.
 
 Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCaTEq1wAKCRBZ7Krx/gZQ
 643uAQC1rRslhw5l7OjxEpIYbGG4M+QaadN4Nf5Sr2SuTRaPJQD/W4oj/u4C2eCw
 Dd3q071tqyvm/PXNgN2EEnIaxlFUlwc=
 =rKq+
 -----END PGP SIGNATURE-----

Merge tag 'pull-persistency' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs

Pull persistent dentry infrastructure and conversion from Al Viro:
 "Some filesystems use a kinda-sorta controlled dentry refcount leak to
  pin dentries of created objects in dcache (and undo it when removing
  those). A reference is grabbed and not released, but it's not actually
  _stored_ anywhere.

  That works, but it's hard to follow and verify; among other things, we
  have no way to tell _which_ of the increments is intended to be an
  unpaired one. Worse, on removal we need to decide whether the
  reference had already been dropped, which can be non-trivial if that
  removal is on umount and we need to figure out if this dentry is
  pinned due to e.g. unlink() not done. Usually that is handled by using
  kill_litter_super() as ->kill_sb(), but there are open-coded special
  cases of the same (consider e.g. /proc/self).

  Things get simpler if we introduce a new dentry flag
  (DCACHE_PERSISTENT) marking those "leaked" dentries. Having it set
  claims responsibility for +1 in refcount.

  The end result this series is aiming for:

   - get these unbalanced dget() and dput() replaced with new primitives
     that would, in addition to adjusting refcount, set and clear
     persistency flag.

   - instead of having kill_litter_super() mess with removing the
     remaining "leaked" references (e.g. for all tmpfs files that hadn't
     been removed prior to umount), have the regular
     shrink_dcache_for_umount() strip DCACHE_PERSISTENT of all dentries,
     dropping the corresponding reference if it had been set. After that
     kill_litter_super() becomes an equivalent of kill_anon_super().

  Doing that in a single step is not feasible - it would affect too many
  places in too many filesystems. It has to be split into a series.

  This work has really started early in 2024; quite a few preliminary
  pieces have already gone into mainline. This chunk is finally getting
  to the meat of that stuff - infrastructure and most of the conversions
  to it.

  Some pieces are still sitting in the local branches, but the bulk of
  that stuff is here"

* tag 'pull-persistency' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (54 commits)
  d_make_discardable(): warn if given a non-persistent dentry
  kill securityfs_recursive_remove()
  convert securityfs
  get rid of kill_litter_super()
  convert rust_binderfs
  convert nfsctl
  convert rpc_pipefs
  convert hypfs
  hypfs: swich hypfs_create_u64() to returning int
  hypfs: switch hypfs_create_str() to returning int
  hypfs: don't pin dentries twice
  convert gadgetfs
  gadgetfs: switch to simple_remove_by_name()
  convert functionfs
  functionfs: switch to simple_remove_by_name()
  functionfs: fix the open/removal races
  functionfs: need to cancel ->reset_work in ->kill_sb()
  functionfs: don't bother with ffs->ref in ffs_data_{opened,closed}()
  functionfs: don't abuse ffs_data_closed() on fs shutdown
  convert selinuxfs
  ...
2025-12-05 14:36:21 -08:00

816 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* SPU file system
*
* (C) Copyright IBM Deutschland Entwicklung GmbH 2005
*
* Author: Arnd Bergmann <arndb@de.ibm.com>
*/
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/fs_context.h>
#include <linux/fs_parser.h>
#include <linux/fsnotify.h>
#include <linux/backing-dev.h>
#include <linux/init.h>
#include <linux/ioctl.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/poll.h>
#include <linux/of.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <asm/spu.h>
#include <asm/spu_priv1.h>
#include <linux/uaccess.h>
#include "spufs.h"
struct spufs_sb_info {
bool debug;
};
static struct kmem_cache *spufs_inode_cache;
char *isolated_loader;
static int isolated_loader_size;
static struct spufs_sb_info *spufs_get_sb_info(struct super_block *sb)
{
return sb->s_fs_info;
}
static struct inode *
spufs_alloc_inode(struct super_block *sb)
{
struct spufs_inode_info *ei;
ei = kmem_cache_alloc(spufs_inode_cache, GFP_KERNEL);
if (!ei)
return NULL;
ei->i_gang = NULL;
ei->i_ctx = NULL;
ei->i_openers = 0;
return &ei->vfs_inode;
}
static void spufs_free_inode(struct inode *inode)
{
kmem_cache_free(spufs_inode_cache, SPUFS_I(inode));
}
static void
spufs_init_once(void *p)
{
struct spufs_inode_info *ei = p;
inode_init_once(&ei->vfs_inode);
}
static struct inode *
spufs_new_inode(struct super_block *sb, umode_t mode)
{
struct inode *inode;
inode = new_inode(sb);
if (!inode)
goto out;
inode->i_ino = get_next_ino();
inode->i_mode = mode;
inode->i_uid = current_fsuid();
inode->i_gid = current_fsgid();
simple_inode_init_ts(inode);
out:
return inode;
}
static int
spufs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
struct iattr *attr)
{
struct inode *inode = d_inode(dentry);
if ((attr->ia_valid & ATTR_SIZE) &&
(attr->ia_size != inode->i_size))
return -EINVAL;
setattr_copy(&nop_mnt_idmap, inode, attr);
mark_inode_dirty(inode);
return 0;
}
static int
spufs_new_file(struct super_block *sb, struct dentry *dentry,
const struct file_operations *fops, umode_t mode,
size_t size, struct spu_context *ctx)
{
static const struct inode_operations spufs_file_iops = {
.setattr = spufs_setattr,
};
struct inode *inode;
int ret;
ret = -ENOSPC;
inode = spufs_new_inode(sb, S_IFREG | mode);
if (!inode)
goto out;
ret = 0;
inode->i_op = &spufs_file_iops;
inode->i_fop = fops;
inode->i_size = size;
inode->i_private = SPUFS_I(inode)->i_ctx = get_spu_context(ctx);
d_make_persistent(dentry, inode);
out:
return ret;
}
static void
spufs_evict_inode(struct inode *inode)
{
struct spufs_inode_info *ei = SPUFS_I(inode);
clear_inode(inode);
if (ei->i_ctx)
put_spu_context(ei->i_ctx);
if (ei->i_gang)
put_spu_gang(ei->i_gang);
}
/* Caller must hold parent->i_mutex */
static void spufs_rmdir(struct inode *parent, struct dentry *dir)
{
struct spu_context *ctx = SPUFS_I(d_inode(dir))->i_ctx;
locked_recursive_removal(dir, NULL);
spu_forget(ctx);
}
static int spufs_fill_dir(struct dentry *dir,
const struct spufs_tree_descr *files, umode_t mode,
struct spu_context *ctx)
{
while (files->name && files->name[0]) {
int ret;
struct dentry *dentry = d_alloc_name(dir, files->name);
if (!dentry)
return -ENOMEM;
ret = spufs_new_file(dir->d_sb, dentry, files->ops,
files->mode & mode, files->size, ctx);
dput(dentry);
if (ret)
return ret;
files++;
}
return 0;
}
static void unuse_gang(struct dentry *dir)
{
struct inode *inode = dir->d_inode;
struct spu_gang *gang = SPUFS_I(inode)->i_gang;
if (gang) {
bool dead;
inode_lock(inode); // exclusion with spufs_create_context()
dead = !--gang->alive;
inode_unlock(inode);
if (dead)
simple_recursive_removal(dir, NULL);
}
}
static int spufs_dir_close(struct inode *inode, struct file *file)
{
struct inode *parent;
struct dentry *dir;
dir = file->f_path.dentry;
parent = d_inode(dir->d_parent);
inode_lock_nested(parent, I_MUTEX_PARENT);
spufs_rmdir(parent, dir);
inode_unlock(parent);
unuse_gang(dir->d_parent);
return dcache_dir_close(inode, file);
}
const struct file_operations spufs_context_fops = {
.open = dcache_dir_open,
.release = spufs_dir_close,
.llseek = dcache_dir_lseek,
.read = generic_read_dir,
.iterate_shared = dcache_readdir,
.fsync = noop_fsync,
};
EXPORT_SYMBOL_GPL(spufs_context_fops);
static int
spufs_mkdir(struct inode *dir, struct dentry *dentry, unsigned int flags,
umode_t mode)
{
int ret;
struct inode *inode;
struct spu_context *ctx;
inode = spufs_new_inode(dir->i_sb, mode | S_IFDIR);
if (!inode)
return -ENOSPC;
inode_init_owner(&nop_mnt_idmap, inode, dir, mode | S_IFDIR);
ctx = alloc_spu_context(SPUFS_I(dir)->i_gang); /* XXX gang */
SPUFS_I(inode)->i_ctx = ctx;
if (!ctx) {
iput(inode);
return -ENOSPC;
}
ctx->flags = flags;
inode->i_op = &simple_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
inode_lock(inode);
inc_nlink(dir);
inc_nlink(inode);
d_make_persistent(dentry, inode);
if (flags & SPU_CREATE_NOSCHED)
ret = spufs_fill_dir(dentry, spufs_dir_nosched_contents,
mode, ctx);
else
ret = spufs_fill_dir(dentry, spufs_dir_contents, mode, ctx);
if (!ret && spufs_get_sb_info(dir->i_sb)->debug)
ret = spufs_fill_dir(dentry, spufs_dir_debug_contents,
mode, ctx);
inode_unlock(inode);
if (ret)
spufs_rmdir(dir, dentry);
return ret;
}
static int spufs_context_open(const struct path *path)
{
FD_PREPARE(fdf, 0, dentry_open(path, O_RDONLY, current_cred()));
if (fdf.err)
return fdf.err;
fd_prepare_file(fdf)->f_op = &spufs_context_fops;
return fd_publish(fdf);
}
static struct spu_context *
spufs_assert_affinity(unsigned int flags, struct spu_gang *gang,
struct file *filp)
{
struct spu_context *tmp, *neighbor, *err;
int count, node;
int aff_supp;
aff_supp = !list_empty(&(list_entry(cbe_spu_info[0].spus.next,
struct spu, cbe_list))->aff_list);
if (!aff_supp)
return ERR_PTR(-EINVAL);
if (flags & SPU_CREATE_GANG)
return ERR_PTR(-EINVAL);
if (flags & SPU_CREATE_AFFINITY_MEM &&
gang->aff_ref_ctx &&
gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM)
return ERR_PTR(-EEXIST);
if (gang->aff_flags & AFF_MERGED)
return ERR_PTR(-EBUSY);
neighbor = NULL;
if (flags & SPU_CREATE_AFFINITY_SPU) {
if (!filp || filp->f_op != &spufs_context_fops)
return ERR_PTR(-EINVAL);
neighbor = get_spu_context(
SPUFS_I(file_inode(filp))->i_ctx);
if (!list_empty(&neighbor->aff_list) && !(neighbor->aff_head) &&
!list_is_last(&neighbor->aff_list, &gang->aff_list_head) &&
!list_entry(neighbor->aff_list.next, struct spu_context,
aff_list)->aff_head) {
err = ERR_PTR(-EEXIST);
goto out_put_neighbor;
}
if (gang != neighbor->gang) {
err = ERR_PTR(-EINVAL);
goto out_put_neighbor;
}
count = 1;
list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
count++;
if (list_empty(&neighbor->aff_list))
count++;
for (node = 0; node < MAX_NUMNODES; node++) {
if ((cbe_spu_info[node].n_spus - atomic_read(
&cbe_spu_info[node].reserved_spus)) >= count)
break;
}
if (node == MAX_NUMNODES) {
err = ERR_PTR(-EEXIST);
goto out_put_neighbor;
}
}
return neighbor;
out_put_neighbor:
put_spu_context(neighbor);
return err;
}
static void
spufs_set_affinity(unsigned int flags, struct spu_context *ctx,
struct spu_context *neighbor)
{
if (flags & SPU_CREATE_AFFINITY_MEM)
ctx->gang->aff_ref_ctx = ctx;
if (flags & SPU_CREATE_AFFINITY_SPU) {
if (list_empty(&neighbor->aff_list)) {
list_add_tail(&neighbor->aff_list,
&ctx->gang->aff_list_head);
neighbor->aff_head = 1;
}
if (list_is_last(&neighbor->aff_list, &ctx->gang->aff_list_head)
|| list_entry(neighbor->aff_list.next, struct spu_context,
aff_list)->aff_head) {
list_add(&ctx->aff_list, &neighbor->aff_list);
} else {
list_add_tail(&ctx->aff_list, &neighbor->aff_list);
if (neighbor->aff_head) {
neighbor->aff_head = 0;
ctx->aff_head = 1;
}
}
if (!ctx->gang->aff_ref_ctx)
ctx->gang->aff_ref_ctx = ctx;
}
}
static int
spufs_create_context(struct inode *inode, struct dentry *dentry,
struct vfsmount *mnt, int flags, umode_t mode,
struct file *aff_filp)
{
int ret;
int affinity;
struct spu_gang *gang = SPUFS_I(inode)->i_gang;
struct spu_context *neighbor;
struct path path = {.mnt = mnt, .dentry = dentry};
if ((flags & SPU_CREATE_NOSCHED) &&
!capable(CAP_SYS_NICE))
return -EPERM;
if ((flags & (SPU_CREATE_NOSCHED | SPU_CREATE_ISOLATE))
== SPU_CREATE_ISOLATE)
return -EINVAL;
if ((flags & SPU_CREATE_ISOLATE) && !isolated_loader)
return -ENODEV;
if (gang) {
if (!gang->alive)
return -ENOENT;
gang->alive++;
}
neighbor = NULL;
affinity = flags & (SPU_CREATE_AFFINITY_MEM | SPU_CREATE_AFFINITY_SPU);
if (affinity) {
if (!gang)
return -EINVAL;
mutex_lock(&gang->aff_mutex);
neighbor = spufs_assert_affinity(flags, gang, aff_filp);
if (IS_ERR(neighbor)) {
ret = PTR_ERR(neighbor);
goto out_aff_unlock;
}
}
ret = spufs_mkdir(inode, dentry, flags, mode & 0777);
if (ret) {
if (neighbor)
put_spu_context(neighbor);
goto out_aff_unlock;
}
if (affinity) {
spufs_set_affinity(flags, SPUFS_I(d_inode(dentry))->i_ctx,
neighbor);
if (neighbor)
put_spu_context(neighbor);
}
ret = spufs_context_open(&path);
if (ret < 0)
spufs_rmdir(inode, dentry);
out_aff_unlock:
if (affinity)
mutex_unlock(&gang->aff_mutex);
if (ret && gang)
gang->alive--; // can't reach 0
return ret;
}
static int
spufs_mkgang(struct inode *dir, struct dentry *dentry, umode_t mode)
{
int ret;
struct inode *inode;
struct spu_gang *gang;
ret = -ENOSPC;
inode = spufs_new_inode(dir->i_sb, mode | S_IFDIR);
if (!inode)
goto out;
ret = 0;
inode_init_owner(&nop_mnt_idmap, inode, dir, mode | S_IFDIR);
gang = alloc_spu_gang();
SPUFS_I(inode)->i_ctx = NULL;
SPUFS_I(inode)->i_gang = gang;
if (!gang) {
ret = -ENOMEM;
goto out_iput;
}
inode->i_op = &simple_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
inc_nlink(dir);
inc_nlink(inode);
d_make_persistent(dentry, inode);
return ret;
out_iput:
iput(inode);
out:
return ret;
}
static int spufs_gang_close(struct inode *inode, struct file *file)
{
unuse_gang(file->f_path.dentry);
return dcache_dir_close(inode, file);
}
static const struct file_operations spufs_gang_fops = {
.open = dcache_dir_open,
.release = spufs_gang_close,
.llseek = dcache_dir_lseek,
.read = generic_read_dir,
.iterate_shared = dcache_readdir,
.fsync = noop_fsync,
};
static int spufs_gang_open(const struct path *path)
{
/*
* get references for dget and mntget, will be released
* in error path of *_open().
*/
FD_PREPARE(fdf, 0, dentry_open(path, O_RDONLY, current_cred()));
if (fdf.err)
return fdf.err;
fd_prepare_file(fdf)->f_op = &spufs_gang_fops;
return fd_publish(fdf);
}
static int spufs_create_gang(struct inode *inode,
struct dentry *dentry,
struct vfsmount *mnt, umode_t mode)
{
struct path path = {.mnt = mnt, .dentry = dentry};
int ret;
ret = spufs_mkgang(inode, dentry, mode & 0777);
if (!ret) {
ret = spufs_gang_open(&path);
if (ret < 0)
unuse_gang(dentry);
}
return ret;
}
static struct file_system_type spufs_type;
long spufs_create(const struct path *path, struct dentry *dentry,
unsigned int flags, umode_t mode, struct file *filp)
{
struct inode *dir = d_inode(path->dentry);
int ret;
/* check if we are on spufs */
if (path->dentry->d_sb->s_type != &spufs_type)
return -EINVAL;
/* don't accept undefined flags */
if (flags & (~SPU_CREATE_FLAG_ALL))
return -EINVAL;
/* only threads can be underneath a gang */
if (path->dentry != path->dentry->d_sb->s_root)
if ((flags & SPU_CREATE_GANG) || !SPUFS_I(dir)->i_gang)
return -EINVAL;
mode &= ~current_umask();
if (flags & SPU_CREATE_GANG)
ret = spufs_create_gang(dir, dentry, path->mnt, mode);
else
ret = spufs_create_context(dir, dentry, path->mnt, flags, mode,
filp);
if (ret >= 0)
fsnotify_mkdir(dir, dentry);
return ret;
}
/* File system initialization */
struct spufs_fs_context {
kuid_t uid;
kgid_t gid;
umode_t mode;
};
enum {
Opt_uid, Opt_gid, Opt_mode, Opt_debug,
};
static const struct fs_parameter_spec spufs_fs_parameters[] = {
fsparam_u32 ("gid", Opt_gid),
fsparam_u32oct ("mode", Opt_mode),
fsparam_u32 ("uid", Opt_uid),
fsparam_flag ("debug", Opt_debug),
{}
};
static int spufs_show_options(struct seq_file *m, struct dentry *root)
{
struct spufs_sb_info *sbi = spufs_get_sb_info(root->d_sb);
struct inode *inode = root->d_inode;
if (!uid_eq(inode->i_uid, GLOBAL_ROOT_UID))
seq_printf(m, ",uid=%u",
from_kuid_munged(&init_user_ns, inode->i_uid));
if (!gid_eq(inode->i_gid, GLOBAL_ROOT_GID))
seq_printf(m, ",gid=%u",
from_kgid_munged(&init_user_ns, inode->i_gid));
if ((inode->i_mode & S_IALLUGO) != 0775)
seq_printf(m, ",mode=%o", inode->i_mode);
if (sbi->debug)
seq_puts(m, ",debug");
return 0;
}
static int spufs_parse_param(struct fs_context *fc, struct fs_parameter *param)
{
struct spufs_fs_context *ctx = fc->fs_private;
struct spufs_sb_info *sbi = fc->s_fs_info;
struct fs_parse_result result;
kuid_t uid;
kgid_t gid;
int opt;
opt = fs_parse(fc, spufs_fs_parameters, param, &result);
if (opt < 0)
return opt;
switch (opt) {
case Opt_uid:
uid = make_kuid(current_user_ns(), result.uint_32);
if (!uid_valid(uid))
return invalf(fc, "Unknown uid");
ctx->uid = uid;
break;
case Opt_gid:
gid = make_kgid(current_user_ns(), result.uint_32);
if (!gid_valid(gid))
return invalf(fc, "Unknown gid");
ctx->gid = gid;
break;
case Opt_mode:
ctx->mode = result.uint_32 & S_IALLUGO;
break;
case Opt_debug:
sbi->debug = true;
break;
}
return 0;
}
static void spufs_exit_isolated_loader(void)
{
free_pages((unsigned long) isolated_loader,
get_order(isolated_loader_size));
}
static void __init
spufs_init_isolated_loader(void)
{
struct device_node *dn;
const char *loader;
int size;
dn = of_find_node_by_path("/spu-isolation");
if (!dn)
return;
loader = of_get_property(dn, "loader", &size);
of_node_put(dn);
if (!loader)
return;
/* the loader must be align on a 16 byte boundary */
isolated_loader = (char *)__get_free_pages(GFP_KERNEL, get_order(size));
if (!isolated_loader)
return;
isolated_loader_size = size;
memcpy(isolated_loader, loader, size);
printk(KERN_INFO "spufs: SPU isolation mode enabled\n");
}
static int spufs_create_root(struct super_block *sb, struct fs_context *fc)
{
struct spufs_fs_context *ctx = fc->fs_private;
struct inode *inode;
if (!spu_management_ops)
return -ENODEV;
inode = spufs_new_inode(sb, S_IFDIR | ctx->mode);
if (!inode)
return -ENOMEM;
inode->i_uid = ctx->uid;
inode->i_gid = ctx->gid;
inode->i_op = &simple_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
SPUFS_I(inode)->i_ctx = NULL;
inc_nlink(inode);
sb->s_root = d_make_root(inode);
if (!sb->s_root)
return -ENOMEM;
return 0;
}
static const struct super_operations spufs_ops = {
.alloc_inode = spufs_alloc_inode,
.free_inode = spufs_free_inode,
.statfs = simple_statfs,
.evict_inode = spufs_evict_inode,
.show_options = spufs_show_options,
};
static int spufs_fill_super(struct super_block *sb, struct fs_context *fc)
{
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_blocksize = PAGE_SIZE;
sb->s_blocksize_bits = PAGE_SHIFT;
sb->s_magic = SPUFS_MAGIC;
sb->s_op = &spufs_ops;
return spufs_create_root(sb, fc);
}
static int spufs_get_tree(struct fs_context *fc)
{
return get_tree_single(fc, spufs_fill_super);
}
static void spufs_free_fc(struct fs_context *fc)
{
kfree(fc->s_fs_info);
}
static const struct fs_context_operations spufs_context_ops = {
.free = spufs_free_fc,
.parse_param = spufs_parse_param,
.get_tree = spufs_get_tree,
};
static int spufs_init_fs_context(struct fs_context *fc)
{
struct spufs_fs_context *ctx;
struct spufs_sb_info *sbi;
ctx = kzalloc(sizeof(struct spufs_fs_context), GFP_KERNEL);
if (!ctx)
goto nomem;
sbi = kzalloc(sizeof(struct spufs_sb_info), GFP_KERNEL);
if (!sbi)
goto nomem_ctx;
ctx->uid = current_uid();
ctx->gid = current_gid();
ctx->mode = 0755;
fc->fs_private = ctx;
fc->s_fs_info = sbi;
fc->ops = &spufs_context_ops;
return 0;
nomem_ctx:
kfree(ctx);
nomem:
return -ENOMEM;
}
static struct file_system_type spufs_type = {
.owner = THIS_MODULE,
.name = "spufs",
.init_fs_context = spufs_init_fs_context,
.parameters = spufs_fs_parameters,
.kill_sb = kill_anon_super,
};
MODULE_ALIAS_FS("spufs");
static int __init spufs_init(void)
{
int ret;
ret = -ENODEV;
if (!spu_management_ops)
goto out;
ret = -ENOMEM;
spufs_inode_cache = kmem_cache_create("spufs_inode_cache",
sizeof(struct spufs_inode_info), 0,
SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, spufs_init_once);
if (!spufs_inode_cache)
goto out;
ret = spu_sched_init();
if (ret)
goto out_cache;
ret = register_spu_syscalls(&spufs_calls);
if (ret)
goto out_sched;
ret = register_filesystem(&spufs_type);
if (ret)
goto out_syscalls;
spufs_init_isolated_loader();
return 0;
out_syscalls:
unregister_spu_syscalls(&spufs_calls);
out_sched:
spu_sched_exit();
out_cache:
kmem_cache_destroy(spufs_inode_cache);
out:
return ret;
}
module_init(spufs_init);
static void __exit spufs_exit(void)
{
spu_sched_exit();
spufs_exit_isolated_loader();
unregister_spu_syscalls(&spufs_calls);
unregister_filesystem(&spufs_type);
kmem_cache_destroy(spufs_inode_cache);
}
module_exit(spufs_exit);
MODULE_DESCRIPTION("SPU file system");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>");