mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2026-01-11 17:10:13 +00:00
Add support for EFI_EDID_DISCOVERED_PROTOCOL and EFI_EDID_ACTIVE_PROTOCOL as defined in UEFI 2.8, sec 12.9. Define GUIDs and data structures in the rsp header files. In the GOP setup function, read the EDID of the primary GOP device. First try EFI_EDID_ACTIVE_PROTOCOL, which supports user-specified EDID data. Or else try EFI_EDID_DISCOVERED_PROTOCOL, which returns the display device's native EDID. If no EDID could be retrieved, clear the storage. Rename efi_setup_gop() to efi_setup_graphics() to reflect the changes Let callers pass an optional instance of struct edid_data, if they are interested. While screen_info and edid_info come from the same device handle, they should be considered indendent data. The former refers to the graphics mode, the latter refers to the display device. GOP devices might not provide both. Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de> Reviewed-by: Javier Martinez Canillas <javierm@redhat.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
270 lines
7.2 KiB
C
270 lines
7.2 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* EFI stub implementation that is shared by arm and arm64 architectures.
|
|
* This should be #included by the EFI stub implementation files.
|
|
*
|
|
* Copyright (C) 2013,2014 Linaro Limited
|
|
* Roy Franz <roy.franz@linaro.org
|
|
* Copyright (C) 2013 Red Hat, Inc.
|
|
* Mark Salter <msalter@redhat.com>
|
|
*/
|
|
|
|
#include <linux/efi.h>
|
|
#include <linux/screen_info.h>
|
|
#include <asm/efi.h>
|
|
|
|
#include "efistub.h"
|
|
|
|
/*
|
|
* This is the base address at which to start allocating virtual memory ranges
|
|
* for UEFI Runtime Services.
|
|
*
|
|
* For ARM/ARM64:
|
|
* This is in the low TTBR0 range so that we can use
|
|
* any allocation we choose, and eliminate the risk of a conflict after kexec.
|
|
* The value chosen is the largest non-zero power of 2 suitable for this purpose
|
|
* both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
|
|
* be mapped efficiently.
|
|
* Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
|
|
* map everything below 1 GB. (512 MB is a reasonable upper bound for the
|
|
* entire footprint of the UEFI runtime services memory regions)
|
|
*
|
|
* For RISC-V:
|
|
* There is no specific reason for which, this address (512MB) can't be used
|
|
* EFI runtime virtual address for RISC-V. It also helps to use EFI runtime
|
|
* services on both RV32/RV64. Keep the same runtime virtual address for RISC-V
|
|
* as well to minimize the code churn.
|
|
*/
|
|
#define EFI_RT_VIRTUAL_BASE SZ_512M
|
|
|
|
/*
|
|
* Some architectures map the EFI regions into the kernel's linear map using a
|
|
* fixed offset.
|
|
*/
|
|
#ifndef EFI_RT_VIRTUAL_OFFSET
|
|
#define EFI_RT_VIRTUAL_OFFSET 0
|
|
#endif
|
|
|
|
static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
|
|
static bool flat_va_mapping = (EFI_RT_VIRTUAL_OFFSET != 0);
|
|
|
|
void __weak free_screen_info(struct screen_info *si)
|
|
{
|
|
}
|
|
|
|
static struct screen_info *setup_graphics(void)
|
|
{
|
|
struct screen_info *si, tmp = {};
|
|
|
|
if (efi_setup_graphics(&tmp, NULL) != EFI_SUCCESS)
|
|
return NULL;
|
|
|
|
si = alloc_screen_info();
|
|
if (!si)
|
|
return NULL;
|
|
|
|
*si = tmp;
|
|
return si;
|
|
}
|
|
|
|
static void install_memreserve_table(void)
|
|
{
|
|
struct linux_efi_memreserve *rsv;
|
|
efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
|
|
efi_status_t status;
|
|
|
|
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
|
|
(void **)&rsv);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to allocate memreserve entry!\n");
|
|
return;
|
|
}
|
|
|
|
rsv->next = 0;
|
|
rsv->size = 0;
|
|
atomic_set(&rsv->count, 0);
|
|
|
|
status = efi_bs_call(install_configuration_table,
|
|
&memreserve_table_guid, rsv);
|
|
if (status != EFI_SUCCESS)
|
|
efi_err("Failed to install memreserve config table!\n");
|
|
}
|
|
|
|
static u32 get_supported_rt_services(void)
|
|
{
|
|
const efi_rt_properties_table_t *rt_prop_table;
|
|
u32 supported = EFI_RT_SUPPORTED_ALL;
|
|
|
|
rt_prop_table = get_efi_config_table(EFI_RT_PROPERTIES_TABLE_GUID);
|
|
if (rt_prop_table)
|
|
supported &= rt_prop_table->runtime_services_supported;
|
|
|
|
return supported;
|
|
}
|
|
|
|
efi_status_t efi_handle_cmdline(efi_loaded_image_t *image, char **cmdline_ptr)
|
|
{
|
|
char *cmdline __free(efi_pool) = NULL;
|
|
efi_status_t status;
|
|
|
|
/*
|
|
* Get the command line from EFI, using the LOADED_IMAGE
|
|
* protocol. We are going to copy the command line into the
|
|
* device tree, so this can be allocated anywhere.
|
|
*/
|
|
cmdline = efi_convert_cmdline(image);
|
|
if (!cmdline) {
|
|
efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
if (!IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
|
|
status = efi_parse_options(cmdline);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to parse EFI load options\n");
|
|
return status;
|
|
}
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
|
|
IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
|
|
cmdline[0] == 0) {
|
|
status = efi_parse_options(CONFIG_CMDLINE);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to parse built-in command line\n");
|
|
return status;
|
|
}
|
|
}
|
|
|
|
*cmdline_ptr = no_free_ptr(cmdline);
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
efi_status_t efi_stub_common(efi_handle_t handle,
|
|
efi_loaded_image_t *image,
|
|
unsigned long image_addr,
|
|
char *cmdline_ptr)
|
|
{
|
|
struct screen_info *si;
|
|
efi_status_t status;
|
|
|
|
status = check_platform_features();
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
si = setup_graphics();
|
|
|
|
efi_retrieve_eventlog();
|
|
|
|
/* Ask the firmware to clear memory on unclean shutdown */
|
|
efi_enable_reset_attack_mitigation();
|
|
|
|
efi_load_initrd(image, ULONG_MAX, efi_get_max_initrd_addr(image_addr),
|
|
NULL);
|
|
|
|
efi_random_get_seed();
|
|
|
|
/* force efi_novamap if SetVirtualAddressMap() is unsupported */
|
|
efi_novamap |= !(get_supported_rt_services() &
|
|
EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP);
|
|
|
|
install_memreserve_table();
|
|
|
|
status = efi_boot_kernel(handle, image, image_addr, cmdline_ptr);
|
|
|
|
free_screen_info(si);
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* efi_allocate_virtmap() - create a pool allocation for the virtmap
|
|
*
|
|
* Create an allocation that is of sufficient size to hold all the memory
|
|
* descriptors that will be passed to SetVirtualAddressMap() to inform the
|
|
* firmware about the virtual mapping that will be used under the OS to call
|
|
* into the firmware.
|
|
*/
|
|
efi_status_t efi_alloc_virtmap(efi_memory_desc_t **virtmap,
|
|
unsigned long *desc_size, u32 *desc_ver)
|
|
{
|
|
unsigned long size, mmap_key;
|
|
efi_status_t status;
|
|
|
|
/*
|
|
* Use the size of the current memory map as an upper bound for the
|
|
* size of the buffer we need to pass to SetVirtualAddressMap() to
|
|
* cover all EFI_MEMORY_RUNTIME regions.
|
|
*/
|
|
size = 0;
|
|
status = efi_bs_call(get_memory_map, &size, NULL, &mmap_key, desc_size,
|
|
desc_ver);
|
|
if (status != EFI_BUFFER_TOO_SMALL)
|
|
return EFI_LOAD_ERROR;
|
|
|
|
return efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
|
|
(void **)virtmap);
|
|
}
|
|
|
|
/*
|
|
* efi_get_virtmap() - create a virtual mapping for the EFI memory map
|
|
*
|
|
* This function populates the virt_addr fields of all memory region descriptors
|
|
* in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
|
|
* are also copied to @runtime_map, and their total count is returned in @count.
|
|
*/
|
|
void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
|
|
unsigned long desc_size, efi_memory_desc_t *runtime_map,
|
|
int *count)
|
|
{
|
|
u64 efi_virt_base = virtmap_base;
|
|
efi_memory_desc_t *in, *out = runtime_map;
|
|
int l;
|
|
|
|
*count = 0;
|
|
|
|
for (l = 0; l < map_size; l += desc_size) {
|
|
u64 paddr, size;
|
|
|
|
in = (void *)memory_map + l;
|
|
if (!(in->attribute & EFI_MEMORY_RUNTIME))
|
|
continue;
|
|
|
|
paddr = in->phys_addr;
|
|
size = in->num_pages * EFI_PAGE_SIZE;
|
|
|
|
in->virt_addr = in->phys_addr + EFI_RT_VIRTUAL_OFFSET;
|
|
if (efi_novamap) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Make the mapping compatible with 64k pages: this allows
|
|
* a 4k page size kernel to kexec a 64k page size kernel and
|
|
* vice versa.
|
|
*/
|
|
if (!flat_va_mapping) {
|
|
|
|
paddr = round_down(in->phys_addr, SZ_64K);
|
|
size += in->phys_addr - paddr;
|
|
|
|
/*
|
|
* Avoid wasting memory on PTEs by choosing a virtual
|
|
* base that is compatible with section mappings if this
|
|
* region has the appropriate size and physical
|
|
* alignment. (Sections are 2 MB on 4k granule kernels)
|
|
*/
|
|
if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
|
|
efi_virt_base = round_up(efi_virt_base, SZ_2M);
|
|
else
|
|
efi_virt_base = round_up(efi_virt_base, SZ_64K);
|
|
|
|
in->virt_addr += efi_virt_base - paddr;
|
|
efi_virt_base += size;
|
|
}
|
|
|
|
memcpy(out, in, desc_size);
|
|
out = (void *)out + desc_size;
|
|
++*count;
|
|
}
|
|
}
|