mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2026-01-11 17:10:13 +00:00
In situations where no system memory is migrated to devmem, and in
upcoming patches where another GPU is performing the migration to
the newly allocated devmem buffer, there is nothing to ensure any
ongoing clear to the devmem allocation or async eviction from the
devmem allocation is complete.
Address that by passing a struct dma_fence down to the copy
functions, and ensure it is waited for before migration is marked
complete.
v3:
- New patch.
v4:
- Update the logic used for determining when to wait for the
pre_migrate_fence.
- Update the logic used for determining when to warn for the
pre_migrate_fence since the scheduler fences apparently
can signal out-of-order.
v5:
- Fix a UAF (CI)
- Remove references to source P2P migration (Himal)
- Put the pre_migrate_fence after migration.
v6:
- Pipeline the pre_migrate_fence dependency (Matt Brost)
Fixes: c5b3eb5a906c ("drm/xe: Add GPUSVM device memory copy vfunc functions")
Cc: Matthew Brost <matthew.brost@intel.com>
Cc: <stable@vger.kernel.org> # v6.15+
Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Reviewed-by: Matthew Brost <matthew.brost@intel.com>
Acked-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> # For merging through drm-xe.
Link: https://patch.msgid.link/20251219113320.183860-4-thomas.hellstrom@linux.intel.com
(cherry picked from commit 16b5ad31952476fb925c401897fc171cd37f536b)
Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
1563 lines
43 KiB
C
1563 lines
43 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2024 Intel Corporation
|
|
*/
|
|
|
|
#include <drm/drm_drv.h>
|
|
|
|
#include "xe_bo.h"
|
|
#include "xe_exec_queue_types.h"
|
|
#include "xe_gt_stats.h"
|
|
#include "xe_migrate.h"
|
|
#include "xe_module.h"
|
|
#include "xe_pm.h"
|
|
#include "xe_pt.h"
|
|
#include "xe_svm.h"
|
|
#include "xe_tile.h"
|
|
#include "xe_ttm_vram_mgr.h"
|
|
#include "xe_vm.h"
|
|
#include "xe_vm_types.h"
|
|
#include "xe_vram_types.h"
|
|
|
|
static bool xe_svm_range_in_vram(struct xe_svm_range *range)
|
|
{
|
|
/*
|
|
* Advisory only check whether the range is currently backed by VRAM
|
|
* memory.
|
|
*/
|
|
|
|
struct drm_gpusvm_pages_flags flags = {
|
|
/* Pairs with WRITE_ONCE in drm_gpusvm.c */
|
|
.__flags = READ_ONCE(range->base.pages.flags.__flags),
|
|
};
|
|
|
|
return flags.has_devmem_pages;
|
|
}
|
|
|
|
static bool xe_svm_range_has_vram_binding(struct xe_svm_range *range)
|
|
{
|
|
/* Not reliable without notifier lock */
|
|
return xe_svm_range_in_vram(range) && range->tile_present;
|
|
}
|
|
|
|
static struct xe_vm *gpusvm_to_vm(struct drm_gpusvm *gpusvm)
|
|
{
|
|
return container_of(gpusvm, struct xe_vm, svm.gpusvm);
|
|
}
|
|
|
|
static struct xe_vm *range_to_vm(struct drm_gpusvm_range *r)
|
|
{
|
|
return gpusvm_to_vm(r->gpusvm);
|
|
}
|
|
|
|
#define range_debug(r__, operation__) \
|
|
vm_dbg(&range_to_vm(&(r__)->base)->xe->drm, \
|
|
"%s: asid=%u, gpusvm=%p, vram=%d,%d, seqno=%lu, " \
|
|
"start=0x%014lx, end=0x%014lx, size=%lu", \
|
|
(operation__), range_to_vm(&(r__)->base)->usm.asid, \
|
|
(r__)->base.gpusvm, \
|
|
xe_svm_range_in_vram((r__)) ? 1 : 0, \
|
|
xe_svm_range_has_vram_binding((r__)) ? 1 : 0, \
|
|
(r__)->base.pages.notifier_seq, \
|
|
xe_svm_range_start((r__)), xe_svm_range_end((r__)), \
|
|
xe_svm_range_size((r__)))
|
|
|
|
void xe_svm_range_debug(struct xe_svm_range *range, const char *operation)
|
|
{
|
|
range_debug(range, operation);
|
|
}
|
|
|
|
static struct drm_gpusvm_range *
|
|
xe_svm_range_alloc(struct drm_gpusvm *gpusvm)
|
|
{
|
|
struct xe_svm_range *range;
|
|
|
|
range = kzalloc(sizeof(*range), GFP_KERNEL);
|
|
if (!range)
|
|
return NULL;
|
|
|
|
INIT_LIST_HEAD(&range->garbage_collector_link);
|
|
xe_vm_get(gpusvm_to_vm(gpusvm));
|
|
|
|
return &range->base;
|
|
}
|
|
|
|
static void xe_svm_range_free(struct drm_gpusvm_range *range)
|
|
{
|
|
xe_vm_put(range_to_vm(range));
|
|
kfree(range);
|
|
}
|
|
|
|
static void
|
|
xe_svm_garbage_collector_add_range(struct xe_vm *vm, struct xe_svm_range *range,
|
|
const struct mmu_notifier_range *mmu_range)
|
|
{
|
|
struct xe_device *xe = vm->xe;
|
|
|
|
range_debug(range, "GARBAGE COLLECTOR ADD");
|
|
|
|
drm_gpusvm_range_set_unmapped(&range->base, mmu_range);
|
|
|
|
spin_lock(&vm->svm.garbage_collector.lock);
|
|
if (list_empty(&range->garbage_collector_link))
|
|
list_add_tail(&range->garbage_collector_link,
|
|
&vm->svm.garbage_collector.range_list);
|
|
spin_unlock(&vm->svm.garbage_collector.lock);
|
|
|
|
queue_work(xe->usm.pf_wq, &vm->svm.garbage_collector.work);
|
|
}
|
|
|
|
static void xe_svm_tlb_inval_count_stats_incr(struct xe_gt *gt)
|
|
{
|
|
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_TLB_INVAL_COUNT, 1);
|
|
}
|
|
|
|
static u8
|
|
xe_svm_range_notifier_event_begin(struct xe_vm *vm, struct drm_gpusvm_range *r,
|
|
const struct mmu_notifier_range *mmu_range,
|
|
u64 *adj_start, u64 *adj_end)
|
|
{
|
|
struct xe_svm_range *range = to_xe_range(r);
|
|
struct xe_device *xe = vm->xe;
|
|
struct xe_tile *tile;
|
|
u8 tile_mask = 0;
|
|
u8 id;
|
|
|
|
xe_svm_assert_in_notifier(vm);
|
|
|
|
range_debug(range, "NOTIFIER");
|
|
|
|
/* Skip if already unmapped or if no binding exist */
|
|
if (range->base.pages.flags.unmapped || !range->tile_present)
|
|
return 0;
|
|
|
|
range_debug(range, "NOTIFIER - EXECUTE");
|
|
|
|
/* Adjust invalidation to range boundaries */
|
|
*adj_start = min(xe_svm_range_start(range), mmu_range->start);
|
|
*adj_end = max(xe_svm_range_end(range), mmu_range->end);
|
|
|
|
/*
|
|
* XXX: Ideally would zap PTEs in one shot in xe_svm_invalidate but the
|
|
* invalidation code can't correctly cope with sparse ranges or
|
|
* invalidations spanning multiple ranges.
|
|
*/
|
|
for_each_tile(tile, xe, id)
|
|
if (xe_pt_zap_ptes_range(tile, vm, range)) {
|
|
/*
|
|
* WRITE_ONCE pairs with READ_ONCE in
|
|
* xe_vm_has_valid_gpu_mapping()
|
|
*/
|
|
WRITE_ONCE(range->tile_invalidated,
|
|
range->tile_invalidated | BIT(id));
|
|
|
|
if (!(tile_mask & BIT(id))) {
|
|
xe_svm_tlb_inval_count_stats_incr(tile->primary_gt);
|
|
if (tile->media_gt)
|
|
xe_svm_tlb_inval_count_stats_incr(tile->media_gt);
|
|
tile_mask |= BIT(id);
|
|
}
|
|
}
|
|
|
|
return tile_mask;
|
|
}
|
|
|
|
static void
|
|
xe_svm_range_notifier_event_end(struct xe_vm *vm, struct drm_gpusvm_range *r,
|
|
const struct mmu_notifier_range *mmu_range)
|
|
{
|
|
struct drm_gpusvm_ctx ctx = { .in_notifier = true, };
|
|
|
|
xe_svm_assert_in_notifier(vm);
|
|
|
|
drm_gpusvm_range_unmap_pages(&vm->svm.gpusvm, r, &ctx);
|
|
if (!xe_vm_is_closed(vm) && mmu_range->event == MMU_NOTIFY_UNMAP)
|
|
xe_svm_garbage_collector_add_range(vm, to_xe_range(r),
|
|
mmu_range);
|
|
}
|
|
|
|
static s64 xe_svm_stats_ktime_us_delta(ktime_t start)
|
|
{
|
|
return IS_ENABLED(CONFIG_DEBUG_FS) ?
|
|
ktime_us_delta(ktime_get(), start) : 0;
|
|
}
|
|
|
|
static void xe_svm_tlb_inval_us_stats_incr(struct xe_gt *gt, ktime_t start)
|
|
{
|
|
s64 us_delta = xe_svm_stats_ktime_us_delta(start);
|
|
|
|
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_TLB_INVAL_US, us_delta);
|
|
}
|
|
|
|
static ktime_t xe_svm_stats_ktime_get(void)
|
|
{
|
|
return IS_ENABLED(CONFIG_DEBUG_FS) ? ktime_get() : 0;
|
|
}
|
|
|
|
static void xe_svm_invalidate(struct drm_gpusvm *gpusvm,
|
|
struct drm_gpusvm_notifier *notifier,
|
|
const struct mmu_notifier_range *mmu_range)
|
|
{
|
|
struct xe_vm *vm = gpusvm_to_vm(gpusvm);
|
|
struct xe_device *xe = vm->xe;
|
|
struct drm_gpusvm_range *r, *first;
|
|
struct xe_tile *tile;
|
|
ktime_t start = xe_svm_stats_ktime_get();
|
|
u64 adj_start = mmu_range->start, adj_end = mmu_range->end;
|
|
u8 tile_mask = 0, id;
|
|
long err;
|
|
|
|
xe_svm_assert_in_notifier(vm);
|
|
|
|
vm_dbg(&gpusvm_to_vm(gpusvm)->xe->drm,
|
|
"INVALIDATE: asid=%u, gpusvm=%p, seqno=%lu, start=0x%016lx, end=0x%016lx, event=%d",
|
|
vm->usm.asid, gpusvm, notifier->notifier.invalidate_seq,
|
|
mmu_range->start, mmu_range->end, mmu_range->event);
|
|
|
|
/* Adjust invalidation to notifier boundaries */
|
|
adj_start = max(drm_gpusvm_notifier_start(notifier), adj_start);
|
|
adj_end = min(drm_gpusvm_notifier_end(notifier), adj_end);
|
|
|
|
first = drm_gpusvm_range_find(notifier, adj_start, adj_end);
|
|
if (!first)
|
|
return;
|
|
|
|
/*
|
|
* PTs may be getting destroyed so not safe to touch these but PT should
|
|
* be invalidated at this point in time. Regardless we still need to
|
|
* ensure any dma mappings are unmapped in the here.
|
|
*/
|
|
if (xe_vm_is_closed(vm))
|
|
goto range_notifier_event_end;
|
|
|
|
/*
|
|
* XXX: Less than ideal to always wait on VM's resv slots if an
|
|
* invalidation is not required. Could walk range list twice to figure
|
|
* out if an invalidations is need, but also not ideal.
|
|
*/
|
|
err = dma_resv_wait_timeout(xe_vm_resv(vm),
|
|
DMA_RESV_USAGE_BOOKKEEP,
|
|
false, MAX_SCHEDULE_TIMEOUT);
|
|
XE_WARN_ON(err <= 0);
|
|
|
|
r = first;
|
|
drm_gpusvm_for_each_range(r, notifier, adj_start, adj_end)
|
|
tile_mask |= xe_svm_range_notifier_event_begin(vm, r, mmu_range,
|
|
&adj_start,
|
|
&adj_end);
|
|
if (!tile_mask)
|
|
goto range_notifier_event_end;
|
|
|
|
xe_device_wmb(xe);
|
|
|
|
err = xe_vm_range_tilemask_tlb_inval(vm, adj_start, adj_end, tile_mask);
|
|
WARN_ON_ONCE(err);
|
|
|
|
range_notifier_event_end:
|
|
r = first;
|
|
drm_gpusvm_for_each_range(r, notifier, adj_start, adj_end)
|
|
xe_svm_range_notifier_event_end(vm, r, mmu_range);
|
|
for_each_tile(tile, xe, id) {
|
|
if (tile_mask & BIT(id)) {
|
|
xe_svm_tlb_inval_us_stats_incr(tile->primary_gt, start);
|
|
if (tile->media_gt)
|
|
xe_svm_tlb_inval_us_stats_incr(tile->media_gt, start);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int __xe_svm_garbage_collector(struct xe_vm *vm,
|
|
struct xe_svm_range *range)
|
|
{
|
|
struct dma_fence *fence;
|
|
|
|
range_debug(range, "GARBAGE COLLECTOR");
|
|
|
|
xe_vm_lock(vm, false);
|
|
fence = xe_vm_range_unbind(vm, range);
|
|
xe_vm_unlock(vm);
|
|
if (IS_ERR(fence))
|
|
return PTR_ERR(fence);
|
|
dma_fence_put(fence);
|
|
|
|
drm_gpusvm_range_remove(&vm->svm.gpusvm, &range->base);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int xe_svm_range_set_default_attr(struct xe_vm *vm, u64 range_start, u64 range_end)
|
|
{
|
|
struct xe_vma *vma;
|
|
struct xe_vma_mem_attr default_attr = {
|
|
.preferred_loc = {
|
|
.devmem_fd = DRM_XE_PREFERRED_LOC_DEFAULT_DEVICE,
|
|
.migration_policy = DRM_XE_MIGRATE_ALL_PAGES,
|
|
},
|
|
.atomic_access = DRM_XE_ATOMIC_UNDEFINED,
|
|
};
|
|
int err = 0;
|
|
|
|
vma = xe_vm_find_vma_by_addr(vm, range_start);
|
|
if (!vma)
|
|
return -EINVAL;
|
|
|
|
if (!(vma->gpuva.flags & XE_VMA_MADV_AUTORESET)) {
|
|
drm_dbg(&vm->xe->drm, "Skipping madvise reset for vma.\n");
|
|
return 0;
|
|
}
|
|
|
|
if (xe_vma_has_default_mem_attrs(vma))
|
|
return 0;
|
|
|
|
vm_dbg(&vm->xe->drm, "Existing VMA start=0x%016llx, vma_end=0x%016llx",
|
|
xe_vma_start(vma), xe_vma_end(vma));
|
|
|
|
if (xe_vma_start(vma) == range_start && xe_vma_end(vma) == range_end) {
|
|
default_attr.pat_index = vma->attr.default_pat_index;
|
|
default_attr.default_pat_index = vma->attr.default_pat_index;
|
|
vma->attr = default_attr;
|
|
} else {
|
|
vm_dbg(&vm->xe->drm, "Split VMA start=0x%016llx, vma_end=0x%016llx",
|
|
range_start, range_end);
|
|
err = xe_vm_alloc_cpu_addr_mirror_vma(vm, range_start, range_end - range_start);
|
|
if (err) {
|
|
drm_warn(&vm->xe->drm, "VMA SPLIT failed: %pe\n", ERR_PTR(err));
|
|
xe_vm_kill(vm, true);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* On call from xe_svm_handle_pagefault original VMA might be changed
|
|
* signal this to lookup for VMA again.
|
|
*/
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static int xe_svm_garbage_collector(struct xe_vm *vm)
|
|
{
|
|
struct xe_svm_range *range;
|
|
u64 range_start;
|
|
u64 range_end;
|
|
int err, ret = 0;
|
|
|
|
lockdep_assert_held_write(&vm->lock);
|
|
|
|
if (xe_vm_is_closed_or_banned(vm))
|
|
return -ENOENT;
|
|
|
|
for (;;) {
|
|
spin_lock(&vm->svm.garbage_collector.lock);
|
|
range = list_first_entry_or_null(&vm->svm.garbage_collector.range_list,
|
|
typeof(*range),
|
|
garbage_collector_link);
|
|
if (!range)
|
|
break;
|
|
|
|
range_start = xe_svm_range_start(range);
|
|
range_end = xe_svm_range_end(range);
|
|
|
|
list_del(&range->garbage_collector_link);
|
|
spin_unlock(&vm->svm.garbage_collector.lock);
|
|
|
|
err = __xe_svm_garbage_collector(vm, range);
|
|
if (err) {
|
|
drm_warn(&vm->xe->drm,
|
|
"Garbage collection failed: %pe\n",
|
|
ERR_PTR(err));
|
|
xe_vm_kill(vm, true);
|
|
return err;
|
|
}
|
|
|
|
err = xe_svm_range_set_default_attr(vm, range_start, range_end);
|
|
if (err) {
|
|
if (err == -EAGAIN)
|
|
ret = -EAGAIN;
|
|
else
|
|
return err;
|
|
}
|
|
}
|
|
spin_unlock(&vm->svm.garbage_collector.lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void xe_svm_garbage_collector_work_func(struct work_struct *w)
|
|
{
|
|
struct xe_vm *vm = container_of(w, struct xe_vm,
|
|
svm.garbage_collector.work);
|
|
|
|
down_write(&vm->lock);
|
|
xe_svm_garbage_collector(vm);
|
|
up_write(&vm->lock);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_XE_PAGEMAP)
|
|
|
|
static struct xe_vram_region *page_to_vr(struct page *page)
|
|
{
|
|
return container_of(page_pgmap(page), struct xe_vram_region, pagemap);
|
|
}
|
|
|
|
static u64 xe_vram_region_page_to_dpa(struct xe_vram_region *vr,
|
|
struct page *page)
|
|
{
|
|
u64 dpa;
|
|
u64 pfn = page_to_pfn(page);
|
|
u64 offset;
|
|
|
|
xe_assert(vr->xe, is_device_private_page(page));
|
|
xe_assert(vr->xe, (pfn << PAGE_SHIFT) >= vr->hpa_base);
|
|
|
|
offset = (pfn << PAGE_SHIFT) - vr->hpa_base;
|
|
dpa = vr->dpa_base + offset;
|
|
|
|
return dpa;
|
|
}
|
|
|
|
enum xe_svm_copy_dir {
|
|
XE_SVM_COPY_TO_VRAM,
|
|
XE_SVM_COPY_TO_SRAM,
|
|
};
|
|
|
|
static void xe_svm_copy_kb_stats_incr(struct xe_gt *gt,
|
|
const enum xe_svm_copy_dir dir,
|
|
int kb)
|
|
{
|
|
if (dir == XE_SVM_COPY_TO_VRAM)
|
|
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_DEVICE_COPY_KB, kb);
|
|
else
|
|
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_CPU_COPY_KB, kb);
|
|
}
|
|
|
|
static void xe_svm_copy_us_stats_incr(struct xe_gt *gt,
|
|
const enum xe_svm_copy_dir dir,
|
|
unsigned long npages,
|
|
ktime_t start)
|
|
{
|
|
s64 us_delta = xe_svm_stats_ktime_us_delta(start);
|
|
|
|
if (dir == XE_SVM_COPY_TO_VRAM) {
|
|
switch (npages) {
|
|
case 1:
|
|
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_4K_DEVICE_COPY_US,
|
|
us_delta);
|
|
break;
|
|
case 16:
|
|
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_64K_DEVICE_COPY_US,
|
|
us_delta);
|
|
break;
|
|
case 512:
|
|
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_2M_DEVICE_COPY_US,
|
|
us_delta);
|
|
break;
|
|
}
|
|
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_DEVICE_COPY_US,
|
|
us_delta);
|
|
} else {
|
|
switch (npages) {
|
|
case 1:
|
|
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_4K_CPU_COPY_US,
|
|
us_delta);
|
|
break;
|
|
case 16:
|
|
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_64K_CPU_COPY_US,
|
|
us_delta);
|
|
break;
|
|
case 512:
|
|
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_2M_CPU_COPY_US,
|
|
us_delta);
|
|
break;
|
|
}
|
|
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_CPU_COPY_US,
|
|
us_delta);
|
|
}
|
|
}
|
|
|
|
static int xe_svm_copy(struct page **pages,
|
|
struct drm_pagemap_addr *pagemap_addr,
|
|
unsigned long npages, const enum xe_svm_copy_dir dir,
|
|
struct dma_fence *pre_migrate_fence)
|
|
{
|
|
struct xe_vram_region *vr = NULL;
|
|
struct xe_gt *gt = NULL;
|
|
struct xe_device *xe;
|
|
struct dma_fence *fence = NULL;
|
|
unsigned long i;
|
|
#define XE_VRAM_ADDR_INVALID ~0x0ull
|
|
u64 vram_addr = XE_VRAM_ADDR_INVALID;
|
|
int err = 0, pos = 0;
|
|
bool sram = dir == XE_SVM_COPY_TO_SRAM;
|
|
ktime_t start = xe_svm_stats_ktime_get();
|
|
|
|
/*
|
|
* This flow is complex: it locates physically contiguous device pages,
|
|
* derives the starting physical address, and performs a single GPU copy
|
|
* to for every 8M chunk in a DMA address array. Both device pages and
|
|
* DMA addresses may be sparsely populated. If either is NULL, a copy is
|
|
* triggered based on the current search state. The last GPU copy is
|
|
* waited on to ensure all copies are complete.
|
|
*/
|
|
|
|
for (i = 0; i < npages; ++i) {
|
|
struct page *spage = pages[i];
|
|
struct dma_fence *__fence;
|
|
u64 __vram_addr;
|
|
bool match = false, chunk, last;
|
|
|
|
#define XE_MIGRATE_CHUNK_SIZE SZ_8M
|
|
chunk = (i - pos) == (XE_MIGRATE_CHUNK_SIZE / PAGE_SIZE);
|
|
last = (i + 1) == npages;
|
|
|
|
/* No CPU page and no device pages queue'd to copy */
|
|
if (!pagemap_addr[i].addr && vram_addr == XE_VRAM_ADDR_INVALID)
|
|
continue;
|
|
|
|
if (!vr && spage) {
|
|
vr = page_to_vr(spage);
|
|
gt = xe_migrate_exec_queue(vr->migrate)->gt;
|
|
xe = vr->xe;
|
|
}
|
|
XE_WARN_ON(spage && page_to_vr(spage) != vr);
|
|
|
|
/*
|
|
* CPU page and device page valid, capture physical address on
|
|
* first device page, check if physical contiguous on subsequent
|
|
* device pages.
|
|
*/
|
|
if (pagemap_addr[i].addr && spage) {
|
|
__vram_addr = xe_vram_region_page_to_dpa(vr, spage);
|
|
if (vram_addr == XE_VRAM_ADDR_INVALID) {
|
|
vram_addr = __vram_addr;
|
|
pos = i;
|
|
}
|
|
|
|
match = vram_addr + PAGE_SIZE * (i - pos) == __vram_addr;
|
|
/* Expected with contiguous memory */
|
|
xe_assert(vr->xe, match);
|
|
|
|
if (pagemap_addr[i].order) {
|
|
i += NR_PAGES(pagemap_addr[i].order) - 1;
|
|
chunk = (i - pos) == (XE_MIGRATE_CHUNK_SIZE / PAGE_SIZE);
|
|
last = (i + 1) == npages;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mismatched physical address, 8M copy chunk, or last page -
|
|
* trigger a copy.
|
|
*/
|
|
if (!match || chunk || last) {
|
|
/*
|
|
* Extra page for first copy if last page and matching
|
|
* physical address.
|
|
*/
|
|
int incr = (match && last) ? 1 : 0;
|
|
|
|
if (vram_addr != XE_VRAM_ADDR_INVALID) {
|
|
xe_svm_copy_kb_stats_incr(gt, dir,
|
|
(i - pos + incr) *
|
|
(PAGE_SIZE / SZ_1K));
|
|
if (sram) {
|
|
vm_dbg(&xe->drm,
|
|
"COPY TO SRAM - 0x%016llx -> 0x%016llx, NPAGES=%ld",
|
|
vram_addr,
|
|
(u64)pagemap_addr[pos].addr, i - pos + incr);
|
|
__fence = xe_migrate_from_vram(vr->migrate,
|
|
i - pos + incr,
|
|
vram_addr,
|
|
&pagemap_addr[pos],
|
|
pre_migrate_fence);
|
|
} else {
|
|
vm_dbg(&xe->drm,
|
|
"COPY TO VRAM - 0x%016llx -> 0x%016llx, NPAGES=%ld",
|
|
(u64)pagemap_addr[pos].addr, vram_addr,
|
|
i - pos + incr);
|
|
__fence = xe_migrate_to_vram(vr->migrate,
|
|
i - pos + incr,
|
|
&pagemap_addr[pos],
|
|
vram_addr,
|
|
pre_migrate_fence);
|
|
}
|
|
if (IS_ERR(__fence)) {
|
|
err = PTR_ERR(__fence);
|
|
goto err_out;
|
|
}
|
|
pre_migrate_fence = NULL;
|
|
dma_fence_put(fence);
|
|
fence = __fence;
|
|
}
|
|
|
|
/* Setup physical address of next device page */
|
|
if (pagemap_addr[i].addr && spage) {
|
|
vram_addr = __vram_addr;
|
|
pos = i;
|
|
} else {
|
|
vram_addr = XE_VRAM_ADDR_INVALID;
|
|
}
|
|
|
|
/* Extra mismatched device page, copy it */
|
|
if (!match && last && vram_addr != XE_VRAM_ADDR_INVALID) {
|
|
xe_svm_copy_kb_stats_incr(gt, dir,
|
|
(PAGE_SIZE / SZ_1K));
|
|
if (sram) {
|
|
vm_dbg(&xe->drm,
|
|
"COPY TO SRAM - 0x%016llx -> 0x%016llx, NPAGES=%d",
|
|
vram_addr, (u64)pagemap_addr[pos].addr, 1);
|
|
__fence = xe_migrate_from_vram(vr->migrate, 1,
|
|
vram_addr,
|
|
&pagemap_addr[pos],
|
|
pre_migrate_fence);
|
|
} else {
|
|
vm_dbg(&xe->drm,
|
|
"COPY TO VRAM - 0x%016llx -> 0x%016llx, NPAGES=%d",
|
|
(u64)pagemap_addr[pos].addr, vram_addr, 1);
|
|
__fence = xe_migrate_to_vram(vr->migrate, 1,
|
|
&pagemap_addr[pos],
|
|
vram_addr,
|
|
pre_migrate_fence);
|
|
}
|
|
if (IS_ERR(__fence)) {
|
|
err = PTR_ERR(__fence);
|
|
goto err_out;
|
|
}
|
|
pre_migrate_fence = NULL;
|
|
dma_fence_put(fence);
|
|
fence = __fence;
|
|
}
|
|
}
|
|
}
|
|
|
|
err_out:
|
|
/* Wait for all copies to complete */
|
|
if (fence) {
|
|
dma_fence_wait(fence, false);
|
|
dma_fence_put(fence);
|
|
}
|
|
if (pre_migrate_fence)
|
|
dma_fence_wait(pre_migrate_fence, false);
|
|
|
|
/*
|
|
* XXX: We can't derive the GT here (or anywhere in this functions, but
|
|
* compute always uses the primary GT so accumulate stats on the likely
|
|
* GT of the fault.
|
|
*/
|
|
if (gt)
|
|
xe_svm_copy_us_stats_incr(gt, dir, npages, start);
|
|
|
|
return err;
|
|
#undef XE_MIGRATE_CHUNK_SIZE
|
|
#undef XE_VRAM_ADDR_INVALID
|
|
}
|
|
|
|
static int xe_svm_copy_to_devmem(struct page **pages,
|
|
struct drm_pagemap_addr *pagemap_addr,
|
|
unsigned long npages,
|
|
struct dma_fence *pre_migrate_fence)
|
|
{
|
|
return xe_svm_copy(pages, pagemap_addr, npages, XE_SVM_COPY_TO_VRAM,
|
|
pre_migrate_fence);
|
|
}
|
|
|
|
static int xe_svm_copy_to_ram(struct page **pages,
|
|
struct drm_pagemap_addr *pagemap_addr,
|
|
unsigned long npages,
|
|
struct dma_fence *pre_migrate_fence)
|
|
{
|
|
return xe_svm_copy(pages, pagemap_addr, npages, XE_SVM_COPY_TO_SRAM,
|
|
pre_migrate_fence);
|
|
}
|
|
|
|
static struct xe_bo *to_xe_bo(struct drm_pagemap_devmem *devmem_allocation)
|
|
{
|
|
return container_of(devmem_allocation, struct xe_bo, devmem_allocation);
|
|
}
|
|
|
|
static void xe_svm_devmem_release(struct drm_pagemap_devmem *devmem_allocation)
|
|
{
|
|
struct xe_bo *bo = to_xe_bo(devmem_allocation);
|
|
struct xe_device *xe = xe_bo_device(bo);
|
|
|
|
dma_fence_put(devmem_allocation->pre_migrate_fence);
|
|
xe_bo_put_async(bo);
|
|
xe_pm_runtime_put(xe);
|
|
}
|
|
|
|
static u64 block_offset_to_pfn(struct xe_vram_region *vr, u64 offset)
|
|
{
|
|
return PHYS_PFN(offset + vr->hpa_base);
|
|
}
|
|
|
|
static struct drm_buddy *vram_to_buddy(struct xe_vram_region *vram)
|
|
{
|
|
return &vram->ttm.mm;
|
|
}
|
|
|
|
static int xe_svm_populate_devmem_pfn(struct drm_pagemap_devmem *devmem_allocation,
|
|
unsigned long npages, unsigned long *pfn)
|
|
{
|
|
struct xe_bo *bo = to_xe_bo(devmem_allocation);
|
|
struct ttm_resource *res = bo->ttm.resource;
|
|
struct list_head *blocks = &to_xe_ttm_vram_mgr_resource(res)->blocks;
|
|
struct drm_buddy_block *block;
|
|
int j = 0;
|
|
|
|
list_for_each_entry(block, blocks, link) {
|
|
struct xe_vram_region *vr = block->private;
|
|
struct drm_buddy *buddy = vram_to_buddy(vr);
|
|
u64 block_pfn = block_offset_to_pfn(vr, drm_buddy_block_offset(block));
|
|
int i;
|
|
|
|
for (i = 0; i < drm_buddy_block_size(buddy, block) >> PAGE_SHIFT; ++i)
|
|
pfn[j++] = block_pfn + i;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct drm_pagemap_devmem_ops dpagemap_devmem_ops = {
|
|
.devmem_release = xe_svm_devmem_release,
|
|
.populate_devmem_pfn = xe_svm_populate_devmem_pfn,
|
|
.copy_to_devmem = xe_svm_copy_to_devmem,
|
|
.copy_to_ram = xe_svm_copy_to_ram,
|
|
};
|
|
|
|
#endif
|
|
|
|
static const struct drm_gpusvm_ops gpusvm_ops = {
|
|
.range_alloc = xe_svm_range_alloc,
|
|
.range_free = xe_svm_range_free,
|
|
.invalidate = xe_svm_invalidate,
|
|
};
|
|
|
|
static const unsigned long fault_chunk_sizes[] = {
|
|
SZ_2M,
|
|
SZ_64K,
|
|
SZ_4K,
|
|
};
|
|
|
|
/**
|
|
* xe_svm_init() - SVM initialize
|
|
* @vm: The VM.
|
|
*
|
|
* Initialize SVM state which is embedded within the VM.
|
|
*
|
|
* Return: 0 on success, negative error code on error.
|
|
*/
|
|
int xe_svm_init(struct xe_vm *vm)
|
|
{
|
|
int err;
|
|
|
|
if (vm->flags & XE_VM_FLAG_FAULT_MODE) {
|
|
spin_lock_init(&vm->svm.garbage_collector.lock);
|
|
INIT_LIST_HEAD(&vm->svm.garbage_collector.range_list);
|
|
INIT_WORK(&vm->svm.garbage_collector.work,
|
|
xe_svm_garbage_collector_work_func);
|
|
|
|
err = drm_gpusvm_init(&vm->svm.gpusvm, "Xe SVM", &vm->xe->drm,
|
|
current->mm, 0, vm->size,
|
|
xe_modparam.svm_notifier_size * SZ_1M,
|
|
&gpusvm_ops, fault_chunk_sizes,
|
|
ARRAY_SIZE(fault_chunk_sizes));
|
|
drm_gpusvm_driver_set_lock(&vm->svm.gpusvm, &vm->lock);
|
|
} else {
|
|
err = drm_gpusvm_init(&vm->svm.gpusvm, "Xe SVM (simple)",
|
|
&vm->xe->drm, NULL, 0, 0, 0, NULL,
|
|
NULL, 0);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* xe_svm_close() - SVM close
|
|
* @vm: The VM.
|
|
*
|
|
* Close SVM state (i.e., stop and flush all SVM actions).
|
|
*/
|
|
void xe_svm_close(struct xe_vm *vm)
|
|
{
|
|
xe_assert(vm->xe, xe_vm_is_closed(vm));
|
|
flush_work(&vm->svm.garbage_collector.work);
|
|
}
|
|
|
|
/**
|
|
* xe_svm_fini() - SVM finalize
|
|
* @vm: The VM.
|
|
*
|
|
* Finalize SVM state which is embedded within the VM.
|
|
*/
|
|
void xe_svm_fini(struct xe_vm *vm)
|
|
{
|
|
xe_assert(vm->xe, xe_vm_is_closed(vm));
|
|
|
|
drm_gpusvm_fini(&vm->svm.gpusvm);
|
|
}
|
|
|
|
static bool xe_svm_range_is_valid(struct xe_svm_range *range,
|
|
struct xe_tile *tile,
|
|
bool devmem_only)
|
|
{
|
|
return (xe_vm_has_valid_gpu_mapping(tile, range->tile_present,
|
|
range->tile_invalidated) &&
|
|
(!devmem_only || xe_svm_range_in_vram(range)));
|
|
}
|
|
|
|
/** xe_svm_range_migrate_to_smem() - Move range pages from VRAM to SMEM
|
|
* @vm: xe_vm pointer
|
|
* @range: Pointer to the SVM range structure
|
|
*
|
|
* The xe_svm_range_migrate_to_smem() checks range has pages in VRAM
|
|
* and migrates them to SMEM
|
|
*/
|
|
void xe_svm_range_migrate_to_smem(struct xe_vm *vm, struct xe_svm_range *range)
|
|
{
|
|
if (xe_svm_range_in_vram(range))
|
|
drm_gpusvm_range_evict(&vm->svm.gpusvm, &range->base);
|
|
}
|
|
|
|
/**
|
|
* xe_svm_range_validate() - Check if the SVM range is valid
|
|
* @vm: xe_vm pointer
|
|
* @range: Pointer to the SVM range structure
|
|
* @tile_mask: Mask representing the tiles to be checked
|
|
* @devmem_preferred : if true range needs to be in devmem
|
|
*
|
|
* The xe_svm_range_validate() function checks if a range is
|
|
* valid and located in the desired memory region.
|
|
*
|
|
* Return: true if the range is valid, false otherwise
|
|
*/
|
|
bool xe_svm_range_validate(struct xe_vm *vm,
|
|
struct xe_svm_range *range,
|
|
u8 tile_mask, bool devmem_preferred)
|
|
{
|
|
bool ret;
|
|
|
|
xe_svm_notifier_lock(vm);
|
|
|
|
ret = (range->tile_present & ~range->tile_invalidated & tile_mask) == tile_mask &&
|
|
(devmem_preferred == range->base.pages.flags.has_devmem_pages);
|
|
|
|
xe_svm_notifier_unlock(vm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* xe_svm_find_vma_start - Find start of CPU VMA
|
|
* @vm: xe_vm pointer
|
|
* @start: start address
|
|
* @end: end address
|
|
* @vma: Pointer to struct xe_vma
|
|
*
|
|
*
|
|
* This function searches for a cpu vma, within the specified
|
|
* range [start, end] in the given VM. It adjusts the range based on the
|
|
* xe_vma start and end addresses. If no cpu VMA is found, it returns ULONG_MAX.
|
|
*
|
|
* Return: The starting address of the VMA within the range,
|
|
* or ULONG_MAX if no VMA is found
|
|
*/
|
|
u64 xe_svm_find_vma_start(struct xe_vm *vm, u64 start, u64 end, struct xe_vma *vma)
|
|
{
|
|
return drm_gpusvm_find_vma_start(&vm->svm.gpusvm,
|
|
max(start, xe_vma_start(vma)),
|
|
min(end, xe_vma_end(vma)));
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_XE_PAGEMAP)
|
|
static int xe_drm_pagemap_populate_mm(struct drm_pagemap *dpagemap,
|
|
unsigned long start, unsigned long end,
|
|
struct mm_struct *mm,
|
|
unsigned long timeslice_ms)
|
|
{
|
|
struct xe_vram_region *vr = container_of(dpagemap, typeof(*vr), dpagemap);
|
|
struct dma_fence *pre_migrate_fence = NULL;
|
|
struct xe_device *xe = vr->xe;
|
|
struct device *dev = xe->drm.dev;
|
|
struct drm_buddy_block *block;
|
|
struct xe_validation_ctx vctx;
|
|
struct list_head *blocks;
|
|
struct drm_exec exec;
|
|
struct xe_bo *bo;
|
|
int err = 0, idx;
|
|
|
|
if (!drm_dev_enter(&xe->drm, &idx))
|
|
return -ENODEV;
|
|
|
|
xe_pm_runtime_get(xe);
|
|
|
|
xe_validation_guard(&vctx, &xe->val, &exec, (struct xe_val_flags) {}, err) {
|
|
bo = xe_bo_create_locked(xe, NULL, NULL, end - start,
|
|
ttm_bo_type_device,
|
|
(IS_DGFX(xe) ? XE_BO_FLAG_VRAM(vr) : XE_BO_FLAG_SYSTEM) |
|
|
XE_BO_FLAG_CPU_ADDR_MIRROR, &exec);
|
|
drm_exec_retry_on_contention(&exec);
|
|
if (IS_ERR(bo)) {
|
|
err = PTR_ERR(bo);
|
|
xe_validation_retry_on_oom(&vctx, &err);
|
|
break;
|
|
}
|
|
|
|
/* Ensure that any clearing or async eviction will complete before migration. */
|
|
if (!dma_resv_test_signaled(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL)) {
|
|
err = dma_resv_get_singleton(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
|
|
&pre_migrate_fence);
|
|
if (err)
|
|
dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
|
|
false, MAX_SCHEDULE_TIMEOUT);
|
|
else if (pre_migrate_fence)
|
|
dma_fence_enable_sw_signaling(pre_migrate_fence);
|
|
}
|
|
|
|
drm_pagemap_devmem_init(&bo->devmem_allocation, dev, mm,
|
|
&dpagemap_devmem_ops, dpagemap, end - start,
|
|
pre_migrate_fence);
|
|
|
|
blocks = &to_xe_ttm_vram_mgr_resource(bo->ttm.resource)->blocks;
|
|
list_for_each_entry(block, blocks, link)
|
|
block->private = vr;
|
|
|
|
xe_bo_get(bo);
|
|
|
|
/* Ensure the device has a pm ref while there are device pages active. */
|
|
xe_pm_runtime_get_noresume(xe);
|
|
err = drm_pagemap_migrate_to_devmem(&bo->devmem_allocation, mm,
|
|
start, end, timeslice_ms,
|
|
xe_svm_devm_owner(xe));
|
|
if (err)
|
|
xe_svm_devmem_release(&bo->devmem_allocation);
|
|
xe_bo_unlock(bo);
|
|
xe_bo_put(bo);
|
|
}
|
|
xe_pm_runtime_put(xe);
|
|
drm_dev_exit(idx);
|
|
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
static bool supports_4K_migration(struct xe_device *xe)
|
|
{
|
|
if (xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* xe_svm_range_needs_migrate_to_vram() - SVM range needs migrate to VRAM or not
|
|
* @range: SVM range for which migration needs to be decided
|
|
* @vma: vma which has range
|
|
* @preferred_region_is_vram: preferred region for range is vram
|
|
*
|
|
* Return: True for range needing migration and migration is supported else false
|
|
*/
|
|
bool xe_svm_range_needs_migrate_to_vram(struct xe_svm_range *range, struct xe_vma *vma,
|
|
bool preferred_region_is_vram)
|
|
{
|
|
struct xe_vm *vm = range_to_vm(&range->base);
|
|
u64 range_size = xe_svm_range_size(range);
|
|
|
|
if (!range->base.pages.flags.migrate_devmem || !preferred_region_is_vram)
|
|
return false;
|
|
|
|
xe_assert(vm->xe, IS_DGFX(vm->xe));
|
|
|
|
if (xe_svm_range_in_vram(range)) {
|
|
drm_dbg(&vm->xe->drm, "Range is already in VRAM\n");
|
|
return false;
|
|
}
|
|
|
|
if (range_size < SZ_64K && !supports_4K_migration(vm->xe)) {
|
|
drm_dbg(&vm->xe->drm, "Platform doesn't support SZ_4K range migration\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#define DECL_SVM_RANGE_COUNT_STATS(elem, stat) \
|
|
static void xe_svm_range_##elem##_count_stats_incr(struct xe_gt *gt, \
|
|
struct xe_svm_range *range) \
|
|
{ \
|
|
switch (xe_svm_range_size(range)) { \
|
|
case SZ_4K: \
|
|
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_4K_##stat##_COUNT, 1); \
|
|
break; \
|
|
case SZ_64K: \
|
|
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_64K_##stat##_COUNT, 1); \
|
|
break; \
|
|
case SZ_2M: \
|
|
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_2M_##stat##_COUNT, 1); \
|
|
break; \
|
|
} \
|
|
} \
|
|
|
|
DECL_SVM_RANGE_COUNT_STATS(fault, PAGEFAULT)
|
|
DECL_SVM_RANGE_COUNT_STATS(valid_fault, VALID_PAGEFAULT)
|
|
DECL_SVM_RANGE_COUNT_STATS(migrate, MIGRATE)
|
|
|
|
#define DECL_SVM_RANGE_US_STATS(elem, stat) \
|
|
static void xe_svm_range_##elem##_us_stats_incr(struct xe_gt *gt, \
|
|
struct xe_svm_range *range, \
|
|
ktime_t start) \
|
|
{ \
|
|
s64 us_delta = xe_svm_stats_ktime_us_delta(start); \
|
|
\
|
|
switch (xe_svm_range_size(range)) { \
|
|
case SZ_4K: \
|
|
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_4K_##stat##_US, \
|
|
us_delta); \
|
|
break; \
|
|
case SZ_64K: \
|
|
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_64K_##stat##_US, \
|
|
us_delta); \
|
|
break; \
|
|
case SZ_2M: \
|
|
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_2M_##stat##_US, \
|
|
us_delta); \
|
|
break; \
|
|
} \
|
|
} \
|
|
|
|
DECL_SVM_RANGE_US_STATS(migrate, MIGRATE)
|
|
DECL_SVM_RANGE_US_STATS(get_pages, GET_PAGES)
|
|
DECL_SVM_RANGE_US_STATS(bind, BIND)
|
|
DECL_SVM_RANGE_US_STATS(fault, PAGEFAULT)
|
|
|
|
static int __xe_svm_handle_pagefault(struct xe_vm *vm, struct xe_vma *vma,
|
|
struct xe_gt *gt, u64 fault_addr,
|
|
bool need_vram)
|
|
{
|
|
int devmem_possible = IS_DGFX(vm->xe) &&
|
|
IS_ENABLED(CONFIG_DRM_XE_PAGEMAP);
|
|
struct drm_gpusvm_ctx ctx = {
|
|
.read_only = xe_vma_read_only(vma),
|
|
.devmem_possible = devmem_possible,
|
|
.check_pages_threshold = devmem_possible ? SZ_64K : 0,
|
|
.devmem_only = need_vram && devmem_possible,
|
|
.timeslice_ms = need_vram && devmem_possible ?
|
|
vm->xe->atomic_svm_timeslice_ms : 0,
|
|
.device_private_page_owner = xe_svm_devm_owner(vm->xe),
|
|
};
|
|
struct xe_validation_ctx vctx;
|
|
struct drm_exec exec;
|
|
struct xe_svm_range *range;
|
|
struct dma_fence *fence;
|
|
struct drm_pagemap *dpagemap;
|
|
struct xe_tile *tile = gt_to_tile(gt);
|
|
int migrate_try_count = ctx.devmem_only ? 3 : 1;
|
|
ktime_t start = xe_svm_stats_ktime_get(), bind_start, get_pages_start;
|
|
int err;
|
|
|
|
lockdep_assert_held_write(&vm->lock);
|
|
xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(vma));
|
|
|
|
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_PAGEFAULT_COUNT, 1);
|
|
|
|
retry:
|
|
/* Always process UNMAPs first so view SVM ranges is current */
|
|
err = xe_svm_garbage_collector(vm);
|
|
if (err)
|
|
return err;
|
|
|
|
dpagemap = xe_vma_resolve_pagemap(vma, tile);
|
|
if (!dpagemap && !ctx.devmem_only)
|
|
ctx.device_private_page_owner = NULL;
|
|
range = xe_svm_range_find_or_insert(vm, fault_addr, vma, &ctx);
|
|
|
|
if (IS_ERR(range))
|
|
return PTR_ERR(range);
|
|
|
|
xe_svm_range_fault_count_stats_incr(gt, range);
|
|
|
|
if (ctx.devmem_only && !range->base.pages.flags.migrate_devmem) {
|
|
err = -EACCES;
|
|
goto out;
|
|
}
|
|
|
|
if (xe_svm_range_is_valid(range, tile, ctx.devmem_only)) {
|
|
xe_svm_range_valid_fault_count_stats_incr(gt, range);
|
|
range_debug(range, "PAGE FAULT - VALID");
|
|
goto out;
|
|
}
|
|
|
|
range_debug(range, "PAGE FAULT");
|
|
|
|
if (--migrate_try_count >= 0 &&
|
|
xe_svm_range_needs_migrate_to_vram(range, vma, !!dpagemap || ctx.devmem_only)) {
|
|
ktime_t migrate_start = xe_svm_stats_ktime_get();
|
|
|
|
/* TODO : For multi-device dpagemap will be used to find the
|
|
* remote tile and remote device. Will need to modify
|
|
* xe_svm_alloc_vram to use dpagemap for future multi-device
|
|
* support.
|
|
*/
|
|
xe_svm_range_migrate_count_stats_incr(gt, range);
|
|
err = xe_svm_alloc_vram(tile, range, &ctx);
|
|
xe_svm_range_migrate_us_stats_incr(gt, range, migrate_start);
|
|
ctx.timeslice_ms <<= 1; /* Double timeslice if we have to retry */
|
|
if (err) {
|
|
if (migrate_try_count || !ctx.devmem_only) {
|
|
drm_dbg(&vm->xe->drm,
|
|
"VRAM allocation failed, falling back to retrying fault, asid=%u, errno=%pe\n",
|
|
vm->usm.asid, ERR_PTR(err));
|
|
|
|
/*
|
|
* In the devmem-only case, mixed mappings may
|
|
* be found. The get_pages function will fix
|
|
* these up to a single location, allowing the
|
|
* page fault handler to make forward progress.
|
|
*/
|
|
if (ctx.devmem_only)
|
|
goto get_pages;
|
|
else
|
|
goto retry;
|
|
} else {
|
|
drm_err(&vm->xe->drm,
|
|
"VRAM allocation failed, retry count exceeded, asid=%u, errno=%pe\n",
|
|
vm->usm.asid, ERR_PTR(err));
|
|
return err;
|
|
}
|
|
}
|
|
}
|
|
|
|
get_pages:
|
|
get_pages_start = xe_svm_stats_ktime_get();
|
|
|
|
range_debug(range, "GET PAGES");
|
|
err = xe_svm_range_get_pages(vm, range, &ctx);
|
|
/* Corner where CPU mappings have changed */
|
|
if (err == -EOPNOTSUPP || err == -EFAULT || err == -EPERM) {
|
|
ctx.timeslice_ms <<= 1; /* Double timeslice if we have to retry */
|
|
if (migrate_try_count > 0 || !ctx.devmem_only) {
|
|
drm_dbg(&vm->xe->drm,
|
|
"Get pages failed, falling back to retrying, asid=%u, gpusvm=%p, errno=%pe\n",
|
|
vm->usm.asid, &vm->svm.gpusvm, ERR_PTR(err));
|
|
range_debug(range, "PAGE FAULT - RETRY PAGES");
|
|
goto retry;
|
|
} else {
|
|
drm_err(&vm->xe->drm,
|
|
"Get pages failed, retry count exceeded, asid=%u, gpusvm=%p, errno=%pe\n",
|
|
vm->usm.asid, &vm->svm.gpusvm, ERR_PTR(err));
|
|
}
|
|
}
|
|
if (err) {
|
|
range_debug(range, "PAGE FAULT - FAIL PAGE COLLECT");
|
|
goto out;
|
|
}
|
|
|
|
xe_svm_range_get_pages_us_stats_incr(gt, range, get_pages_start);
|
|
range_debug(range, "PAGE FAULT - BIND");
|
|
|
|
bind_start = xe_svm_stats_ktime_get();
|
|
xe_validation_guard(&vctx, &vm->xe->val, &exec, (struct xe_val_flags) {}, err) {
|
|
err = xe_vm_drm_exec_lock(vm, &exec);
|
|
drm_exec_retry_on_contention(&exec);
|
|
|
|
xe_vm_set_validation_exec(vm, &exec);
|
|
fence = xe_vm_range_rebind(vm, vma, range, BIT(tile->id));
|
|
xe_vm_set_validation_exec(vm, NULL);
|
|
if (IS_ERR(fence)) {
|
|
drm_exec_retry_on_contention(&exec);
|
|
err = PTR_ERR(fence);
|
|
xe_validation_retry_on_oom(&vctx, &err);
|
|
xe_svm_range_bind_us_stats_incr(gt, range, bind_start);
|
|
break;
|
|
}
|
|
}
|
|
if (err)
|
|
goto err_out;
|
|
|
|
dma_fence_wait(fence, false);
|
|
dma_fence_put(fence);
|
|
xe_svm_range_bind_us_stats_incr(gt, range, bind_start);
|
|
|
|
out:
|
|
xe_svm_range_fault_us_stats_incr(gt, range, start);
|
|
return 0;
|
|
|
|
err_out:
|
|
if (err == -EAGAIN) {
|
|
ctx.timeslice_ms <<= 1; /* Double timeslice if we have to retry */
|
|
range_debug(range, "PAGE FAULT - RETRY BIND");
|
|
goto retry;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* xe_svm_handle_pagefault() - SVM handle page fault
|
|
* @vm: The VM.
|
|
* @vma: The CPU address mirror VMA.
|
|
* @gt: The gt upon the fault occurred.
|
|
* @fault_addr: The GPU fault address.
|
|
* @atomic: The fault atomic access bit.
|
|
*
|
|
* Create GPU bindings for a SVM page fault. Optionally migrate to device
|
|
* memory.
|
|
*
|
|
* Return: 0 on success, negative error code on error.
|
|
*/
|
|
int xe_svm_handle_pagefault(struct xe_vm *vm, struct xe_vma *vma,
|
|
struct xe_gt *gt, u64 fault_addr,
|
|
bool atomic)
|
|
{
|
|
int need_vram, ret;
|
|
retry:
|
|
need_vram = xe_vma_need_vram_for_atomic(vm->xe, vma, atomic);
|
|
if (need_vram < 0)
|
|
return need_vram;
|
|
|
|
ret = __xe_svm_handle_pagefault(vm, vma, gt, fault_addr,
|
|
need_vram ? true : false);
|
|
if (ret == -EAGAIN) {
|
|
/*
|
|
* Retry once on -EAGAIN to re-lookup the VMA, as the original VMA
|
|
* may have been split by xe_svm_range_set_default_attr.
|
|
*/
|
|
vma = xe_vm_find_vma_by_addr(vm, fault_addr);
|
|
if (!vma)
|
|
return -EINVAL;
|
|
|
|
goto retry;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* xe_svm_has_mapping() - SVM has mappings
|
|
* @vm: The VM.
|
|
* @start: Start address.
|
|
* @end: End address.
|
|
*
|
|
* Check if an address range has SVM mappings.
|
|
*
|
|
* Return: True if address range has a SVM mapping, False otherwise
|
|
*/
|
|
bool xe_svm_has_mapping(struct xe_vm *vm, u64 start, u64 end)
|
|
{
|
|
return drm_gpusvm_has_mapping(&vm->svm.gpusvm, start, end);
|
|
}
|
|
|
|
/**
|
|
* xe_svm_unmap_address_range - UNMAP SVM mappings and ranges
|
|
* @vm: The VM
|
|
* @start: start addr
|
|
* @end: end addr
|
|
*
|
|
* This function UNMAPS svm ranges if start or end address are inside them.
|
|
*/
|
|
void xe_svm_unmap_address_range(struct xe_vm *vm, u64 start, u64 end)
|
|
{
|
|
struct drm_gpusvm_notifier *notifier, *next;
|
|
|
|
lockdep_assert_held_write(&vm->lock);
|
|
|
|
drm_gpusvm_for_each_notifier_safe(notifier, next, &vm->svm.gpusvm, start, end) {
|
|
struct drm_gpusvm_range *range, *__next;
|
|
|
|
drm_gpusvm_for_each_range_safe(range, __next, notifier, start, end) {
|
|
if (start > drm_gpusvm_range_start(range) ||
|
|
end < drm_gpusvm_range_end(range)) {
|
|
if (IS_DGFX(vm->xe) && xe_svm_range_in_vram(to_xe_range(range)))
|
|
drm_gpusvm_range_evict(&vm->svm.gpusvm, range);
|
|
drm_gpusvm_range_get(range);
|
|
__xe_svm_garbage_collector(vm, to_xe_range(range));
|
|
if (!list_empty(&to_xe_range(range)->garbage_collector_link)) {
|
|
spin_lock(&vm->svm.garbage_collector.lock);
|
|
list_del(&to_xe_range(range)->garbage_collector_link);
|
|
spin_unlock(&vm->svm.garbage_collector.lock);
|
|
}
|
|
drm_gpusvm_range_put(range);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xe_svm_bo_evict() - SVM evict BO to system memory
|
|
* @bo: BO to evict
|
|
*
|
|
* SVM evict BO to system memory. GPU SVM layer ensures all device pages
|
|
* are evicted before returning.
|
|
*
|
|
* Return: 0 on success standard error code otherwise
|
|
*/
|
|
int xe_svm_bo_evict(struct xe_bo *bo)
|
|
{
|
|
return drm_pagemap_evict_to_ram(&bo->devmem_allocation);
|
|
}
|
|
|
|
/**
|
|
* xe_svm_range_find_or_insert- Find or insert GPU SVM range
|
|
* @vm: xe_vm pointer
|
|
* @addr: address for which range needs to be found/inserted
|
|
* @vma: Pointer to struct xe_vma which mirrors CPU
|
|
* @ctx: GPU SVM context
|
|
*
|
|
* This function finds or inserts a newly allocated a SVM range based on the
|
|
* address.
|
|
*
|
|
* Return: Pointer to the SVM range on success, ERR_PTR() on failure.
|
|
*/
|
|
struct xe_svm_range *xe_svm_range_find_or_insert(struct xe_vm *vm, u64 addr,
|
|
struct xe_vma *vma, struct drm_gpusvm_ctx *ctx)
|
|
{
|
|
struct drm_gpusvm_range *r;
|
|
|
|
r = drm_gpusvm_range_find_or_insert(&vm->svm.gpusvm, max(addr, xe_vma_start(vma)),
|
|
xe_vma_start(vma), xe_vma_end(vma), ctx);
|
|
if (IS_ERR(r))
|
|
return ERR_CAST(r);
|
|
|
|
return to_xe_range(r);
|
|
}
|
|
|
|
/**
|
|
* xe_svm_range_get_pages() - Get pages for a SVM range
|
|
* @vm: Pointer to the struct xe_vm
|
|
* @range: Pointer to the xe SVM range structure
|
|
* @ctx: GPU SVM context
|
|
*
|
|
* This function gets pages for a SVM range and ensures they are mapped for
|
|
* DMA access. In case of failure with -EOPNOTSUPP, it evicts the range.
|
|
*
|
|
* Return: 0 on success, negative error code on failure.
|
|
*/
|
|
int xe_svm_range_get_pages(struct xe_vm *vm, struct xe_svm_range *range,
|
|
struct drm_gpusvm_ctx *ctx)
|
|
{
|
|
int err = 0;
|
|
|
|
err = drm_gpusvm_range_get_pages(&vm->svm.gpusvm, &range->base, ctx);
|
|
if (err == -EOPNOTSUPP) {
|
|
range_debug(range, "PAGE FAULT - EVICT PAGES");
|
|
drm_gpusvm_range_evict(&vm->svm.gpusvm, &range->base);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* xe_svm_ranges_zap_ptes_in_range - clear ptes of svm ranges in input range
|
|
* @vm: Pointer to the xe_vm structure
|
|
* @start: Start of the input range
|
|
* @end: End of the input range
|
|
*
|
|
* This function removes the page table entries (PTEs) associated
|
|
* with the svm ranges within the given input start and end
|
|
*
|
|
* Return: tile_mask for which gt's need to be tlb invalidated.
|
|
*/
|
|
u8 xe_svm_ranges_zap_ptes_in_range(struct xe_vm *vm, u64 start, u64 end)
|
|
{
|
|
struct drm_gpusvm_notifier *notifier;
|
|
struct xe_svm_range *range;
|
|
u64 adj_start, adj_end;
|
|
struct xe_tile *tile;
|
|
u8 tile_mask = 0;
|
|
u8 id;
|
|
|
|
lockdep_assert(lockdep_is_held_type(&vm->svm.gpusvm.notifier_lock, 1) &&
|
|
lockdep_is_held_type(&vm->lock, 0));
|
|
|
|
drm_gpusvm_for_each_notifier(notifier, &vm->svm.gpusvm, start, end) {
|
|
struct drm_gpusvm_range *r = NULL;
|
|
|
|
adj_start = max(start, drm_gpusvm_notifier_start(notifier));
|
|
adj_end = min(end, drm_gpusvm_notifier_end(notifier));
|
|
drm_gpusvm_for_each_range(r, notifier, adj_start, adj_end) {
|
|
range = to_xe_range(r);
|
|
for_each_tile(tile, vm->xe, id) {
|
|
if (xe_pt_zap_ptes_range(tile, vm, range)) {
|
|
tile_mask |= BIT(id);
|
|
/*
|
|
* WRITE_ONCE pairs with READ_ONCE in
|
|
* xe_vm_has_valid_gpu_mapping().
|
|
* Must not fail after setting
|
|
* tile_invalidated and before
|
|
* TLB invalidation.
|
|
*/
|
|
WRITE_ONCE(range->tile_invalidated,
|
|
range->tile_invalidated | BIT(id));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return tile_mask;
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_XE_PAGEMAP)
|
|
|
|
static struct drm_pagemap *tile_local_pagemap(struct xe_tile *tile)
|
|
{
|
|
return &tile->mem.vram->dpagemap;
|
|
}
|
|
|
|
/**
|
|
* xe_vma_resolve_pagemap - Resolve the appropriate DRM pagemap for a VMA
|
|
* @vma: Pointer to the xe_vma structure containing memory attributes
|
|
* @tile: Pointer to the xe_tile structure used as fallback for VRAM mapping
|
|
*
|
|
* This function determines the correct DRM pagemap to use for a given VMA.
|
|
* It first checks if a valid devmem_fd is provided in the VMA's preferred
|
|
* location. If the devmem_fd is negative, it returns NULL, indicating no
|
|
* pagemap is available and smem to be used as preferred location.
|
|
* If the devmem_fd is equal to the default faulting
|
|
* GT identifier, it returns the VRAM pagemap associated with the tile.
|
|
*
|
|
* Future support for multi-device configurations may use drm_pagemap_from_fd()
|
|
* to resolve pagemaps from arbitrary file descriptors.
|
|
*
|
|
* Return: A pointer to the resolved drm_pagemap, or NULL if none is applicable.
|
|
*/
|
|
struct drm_pagemap *xe_vma_resolve_pagemap(struct xe_vma *vma, struct xe_tile *tile)
|
|
{
|
|
s32 fd = (s32)vma->attr.preferred_loc.devmem_fd;
|
|
|
|
if (fd == DRM_XE_PREFERRED_LOC_DEFAULT_SYSTEM)
|
|
return NULL;
|
|
|
|
if (fd == DRM_XE_PREFERRED_LOC_DEFAULT_DEVICE)
|
|
return IS_DGFX(tile_to_xe(tile)) ? tile_local_pagemap(tile) : NULL;
|
|
|
|
/* TODO: Support multi-device with drm_pagemap_from_fd(fd) */
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* xe_svm_alloc_vram()- Allocate device memory pages for range,
|
|
* migrating existing data.
|
|
* @tile: tile to allocate vram from
|
|
* @range: SVM range
|
|
* @ctx: DRM GPU SVM context
|
|
*
|
|
* Return: 0 on success, error code on failure.
|
|
*/
|
|
int xe_svm_alloc_vram(struct xe_tile *tile, struct xe_svm_range *range,
|
|
const struct drm_gpusvm_ctx *ctx)
|
|
{
|
|
struct drm_pagemap *dpagemap;
|
|
|
|
xe_assert(tile_to_xe(tile), range->base.pages.flags.migrate_devmem);
|
|
range_debug(range, "ALLOCATE VRAM");
|
|
|
|
dpagemap = tile_local_pagemap(tile);
|
|
return drm_pagemap_populate_mm(dpagemap, xe_svm_range_start(range),
|
|
xe_svm_range_end(range),
|
|
range->base.gpusvm->mm,
|
|
ctx->timeslice_ms);
|
|
}
|
|
|
|
static struct drm_pagemap_addr
|
|
xe_drm_pagemap_device_map(struct drm_pagemap *dpagemap,
|
|
struct device *dev,
|
|
struct page *page,
|
|
unsigned int order,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct device *pgmap_dev = dpagemap->dev;
|
|
enum drm_interconnect_protocol prot;
|
|
dma_addr_t addr;
|
|
|
|
if (pgmap_dev == dev) {
|
|
addr = xe_vram_region_page_to_dpa(page_to_vr(page), page);
|
|
prot = XE_INTERCONNECT_VRAM;
|
|
} else {
|
|
addr = DMA_MAPPING_ERROR;
|
|
prot = 0;
|
|
}
|
|
|
|
return drm_pagemap_addr_encode(addr, prot, order, dir);
|
|
}
|
|
|
|
static const struct drm_pagemap_ops xe_drm_pagemap_ops = {
|
|
.device_map = xe_drm_pagemap_device_map,
|
|
.populate_mm = xe_drm_pagemap_populate_mm,
|
|
};
|
|
|
|
/**
|
|
* xe_devm_add: Remap and provide memmap backing for device memory
|
|
* @tile: tile that the memory region belongs to
|
|
* @vr: vram memory region to remap
|
|
*
|
|
* This remap device memory to host physical address space and create
|
|
* struct page to back device memory
|
|
*
|
|
* Return: 0 on success standard error code otherwise
|
|
*/
|
|
int xe_devm_add(struct xe_tile *tile, struct xe_vram_region *vr)
|
|
{
|
|
struct xe_device *xe = tile_to_xe(tile);
|
|
struct device *dev = &to_pci_dev(xe->drm.dev)->dev;
|
|
struct resource *res;
|
|
void *addr;
|
|
int ret;
|
|
|
|
res = devm_request_free_mem_region(dev, &iomem_resource,
|
|
vr->usable_size);
|
|
if (IS_ERR(res)) {
|
|
ret = PTR_ERR(res);
|
|
return ret;
|
|
}
|
|
|
|
vr->pagemap.type = MEMORY_DEVICE_PRIVATE;
|
|
vr->pagemap.range.start = res->start;
|
|
vr->pagemap.range.end = res->end;
|
|
vr->pagemap.nr_range = 1;
|
|
vr->pagemap.ops = drm_pagemap_pagemap_ops_get();
|
|
vr->pagemap.owner = xe_svm_devm_owner(xe);
|
|
addr = devm_memremap_pages(dev, &vr->pagemap);
|
|
|
|
vr->dpagemap.dev = dev;
|
|
vr->dpagemap.ops = &xe_drm_pagemap_ops;
|
|
|
|
if (IS_ERR(addr)) {
|
|
devm_release_mem_region(dev, res->start, resource_size(res));
|
|
ret = PTR_ERR(addr);
|
|
drm_err(&xe->drm, "Failed to remap tile %d memory, errno %pe\n",
|
|
tile->id, ERR_PTR(ret));
|
|
return ret;
|
|
}
|
|
vr->hpa_base = res->start;
|
|
|
|
drm_dbg(&xe->drm, "Added tile %d memory [%llx-%llx] to devm, remapped to %pr\n",
|
|
tile->id, vr->io_start, vr->io_start + vr->usable_size, res);
|
|
return 0;
|
|
}
|
|
#else
|
|
int xe_svm_alloc_vram(struct xe_tile *tile,
|
|
struct xe_svm_range *range,
|
|
const struct drm_gpusvm_ctx *ctx)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
int xe_devm_add(struct xe_tile *tile, struct xe_vram_region *vr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
struct drm_pagemap *xe_vma_resolve_pagemap(struct xe_vma *vma, struct xe_tile *tile)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* xe_svm_flush() - SVM flush
|
|
* @vm: The VM.
|
|
*
|
|
* Flush all SVM actions.
|
|
*/
|
|
void xe_svm_flush(struct xe_vm *vm)
|
|
{
|
|
if (xe_vm_in_fault_mode(vm))
|
|
flush_work(&vm->svm.garbage_collector.work);
|
|
}
|