1
0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2026-01-11 17:10:13 +00:00
torvalds-linux/drivers/i3c/master/svc-i3c-master.c
Frank Li 4e7263b87c i3c: master: svc: Add basic HDR mode support
Add basic HDR mode support for the svs I3C master driver.

Only support for private transfers and does not support sending CCC
commands in HDR mode.

Key differences:
- HDR uses commands (0x00-0x7F for write, 0x80-0xFF for read) to
distinguish transfer direction.
- HDR read/write commands must be written to FIFO before issuing the I3C
address command. The hardware automatically sends the standard CCC command
to enter HDR mode.
- HDR exit pattern must be sent instead of send a stop after transfer
completion.
- Read/write data size must be an even number.

Co-developed-by: Carlos Song <carlos.song@nxp.com>
Signed-off-by: Carlos Song <carlos.song@nxp.com>
Signed-off-by: Frank Li <Frank.Li@nxp.com>
Link: https://patch.msgid.link/20251106-i3c_ddr-v11-4-33a6a66ed095@nxp.com
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
2025-11-29 00:39:08 +01:00

2171 lines
61 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Silvaco dual-role I3C master driver
*
* Copyright (C) 2020 Silvaco
* Author: Miquel RAYNAL <miquel.raynal@bootlin.com>
* Based on a work from: Conor Culhane <conor.culhane@silvaco.com>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/errno.h>
#include <linux/i3c/master.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
/* Master Mode Registers */
#define SVC_I3C_MCONFIG 0x000
#define SVC_I3C_MCONFIG_MASTER_EN BIT(0)
#define SVC_I3C_MCONFIG_DISTO(x) FIELD_PREP(BIT(3), (x))
#define SVC_I3C_MCONFIG_HKEEP(x) FIELD_PREP(GENMASK(5, 4), (x))
#define SVC_I3C_MCONFIG_ODSTOP(x) FIELD_PREP(BIT(6), (x))
#define SVC_I3C_MCONFIG_PPBAUD(x) FIELD_PREP(GENMASK(11, 8), (x))
#define SVC_I3C_MCONFIG_PPLOW(x) FIELD_PREP(GENMASK(15, 12), (x))
#define SVC_I3C_MCONFIG_ODBAUD(x) FIELD_PREP(GENMASK(23, 16), (x))
#define SVC_I3C_MCONFIG_ODHPP(x) FIELD_PREP(BIT(24), (x))
#define SVC_I3C_MCONFIG_SKEW(x) FIELD_PREP(GENMASK(27, 25), (x))
#define SVC_I3C_MCONFIG_SKEW_MASK GENMASK(27, 25)
#define SVC_I3C_MCONFIG_I2CBAUD(x) FIELD_PREP(GENMASK(31, 28), (x))
#define SVC_I3C_MCTRL 0x084
#define SVC_I3C_MCTRL_REQUEST_MASK GENMASK(2, 0)
#define SVC_I3C_MCTRL_REQUEST_NONE 0
#define SVC_I3C_MCTRL_REQUEST_START_ADDR 1
#define SVC_I3C_MCTRL_REQUEST_STOP 2
#define SVC_I3C_MCTRL_REQUEST_FORCE_EXIT 6
#define SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK 3
#define SVC_I3C_MCTRL_REQUEST_PROC_DAA 4
#define SVC_I3C_MCTRL_REQUEST_AUTO_IBI 7
#define SVC_I3C_MCTRL_TYPE_I3C 0
#define SVC_I3C_MCTRL_TYPE_I2C BIT(4)
#define SVC_I3C_MCTRL_TYPE_DDR BIT(5)
#define SVC_I3C_MCTRL_IBIRESP_AUTO 0
#define SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE 0
#define SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE BIT(7)
#define SVC_I3C_MCTRL_IBIRESP_NACK BIT(6)
#define SVC_I3C_MCTRL_IBIRESP_MANUAL GENMASK(7, 6)
#define SVC_I3C_MCTRL_DIR(x) FIELD_PREP(BIT(8), (x))
#define SVC_I3C_MCTRL_DIR_WRITE 0
#define SVC_I3C_MCTRL_DIR_READ 1
#define SVC_I3C_MCTRL_ADDR(x) FIELD_PREP(GENMASK(15, 9), (x))
#define SVC_I3C_MCTRL_RDTERM(x) FIELD_PREP(GENMASK(23, 16), (x))
#define SVC_I3C_MSTATUS 0x088
#define SVC_I3C_MSTATUS_STATE(x) FIELD_GET(GENMASK(2, 0), (x))
#define SVC_I3C_MSTATUS_STATE_DAA(x) (SVC_I3C_MSTATUS_STATE(x) == 5)
#define SVC_I3C_MSTATUS_STATE_SLVREQ(x) (SVC_I3C_MSTATUS_STATE(x) == 1)
#define SVC_I3C_MSTATUS_STATE_IDLE(x) (SVC_I3C_MSTATUS_STATE(x) == 0)
#define SVC_I3C_MSTATUS_BETWEEN(x) FIELD_GET(BIT(4), (x))
#define SVC_I3C_MSTATUS_NACKED(x) FIELD_GET(BIT(5), (x))
#define SVC_I3C_MSTATUS_IBITYPE(x) FIELD_GET(GENMASK(7, 6), (x))
#define SVC_I3C_MSTATUS_IBITYPE_IBI 1
#define SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST 2
#define SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN 3
#define SVC_I3C_MINT_SLVSTART BIT(8)
#define SVC_I3C_MINT_MCTRLDONE BIT(9)
#define SVC_I3C_MINT_COMPLETE BIT(10)
#define SVC_I3C_MINT_RXPEND BIT(11)
#define SVC_I3C_MINT_TXNOTFULL BIT(12)
#define SVC_I3C_MINT_IBIWON BIT(13)
#define SVC_I3C_MINT_ERRWARN BIT(15)
#define SVC_I3C_MSTATUS_SLVSTART(x) FIELD_GET(SVC_I3C_MINT_SLVSTART, (x))
#define SVC_I3C_MSTATUS_MCTRLDONE(x) FIELD_GET(SVC_I3C_MINT_MCTRLDONE, (x))
#define SVC_I3C_MSTATUS_COMPLETE(x) FIELD_GET(SVC_I3C_MINT_COMPLETE, (x))
#define SVC_I3C_MSTATUS_RXPEND(x) FIELD_GET(SVC_I3C_MINT_RXPEND, (x))
#define SVC_I3C_MSTATUS_TXNOTFULL(x) FIELD_GET(SVC_I3C_MINT_TXNOTFULL, (x))
#define SVC_I3C_MSTATUS_IBIWON(x) FIELD_GET(SVC_I3C_MINT_IBIWON, (x))
#define SVC_I3C_MSTATUS_ERRWARN(x) FIELD_GET(SVC_I3C_MINT_ERRWARN, (x))
#define SVC_I3C_MSTATUS_IBIADDR(x) FIELD_GET(GENMASK(30, 24), (x))
#define SVC_I3C_IBIRULES 0x08C
#define SVC_I3C_IBIRULES_ADDR(slot, addr) FIELD_PREP(GENMASK(29, 0), \
((addr) & 0x3F) << ((slot) * 6))
#define SVC_I3C_IBIRULES_ADDRS 5
#define SVC_I3C_IBIRULES_MSB0 BIT(30)
#define SVC_I3C_IBIRULES_NOBYTE BIT(31)
#define SVC_I3C_IBIRULES_MANDBYTE 0
#define SVC_I3C_MINTSET 0x090
#define SVC_I3C_MINTCLR 0x094
#define SVC_I3C_MINTMASKED 0x098
#define SVC_I3C_MERRWARN 0x09C
#define SVC_I3C_MERRWARN_NACK BIT(2)
#define SVC_I3C_MERRWARN_CRC BIT(10)
#define SVC_I3C_MERRWARN_TIMEOUT BIT(20)
#define SVC_I3C_MDMACTRL 0x0A0
#define SVC_I3C_MDATACTRL 0x0AC
#define SVC_I3C_MDATACTRL_FLUSHTB BIT(0)
#define SVC_I3C_MDATACTRL_FLUSHRB BIT(1)
#define SVC_I3C_MDATACTRL_UNLOCK_TRIG BIT(3)
#define SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL GENMASK(5, 4)
#define SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY 0
#define SVC_I3C_MDATACTRL_RXCOUNT(x) FIELD_GET(GENMASK(28, 24), (x))
#define SVC_I3C_MDATACTRL_TXCOUNT(x) FIELD_GET(GENMASK(20, 16), (x))
#define SVC_I3C_MDATACTRL_TXFULL BIT(30)
#define SVC_I3C_MDATACTRL_RXEMPTY BIT(31)
#define SVC_I3C_MWDATAB 0x0B0
#define SVC_I3C_MWDATAB_END BIT(8)
#define SVC_I3C_MWDATABE 0x0B4
#define SVC_I3C_MWDATAH 0x0B8
#define SVC_I3C_MWDATAHE 0x0BC
#define SVC_I3C_MRDATAB 0x0C0
#define SVC_I3C_MRDATAH 0x0C8
#define SVC_I3C_MWDATAB1 0x0CC
#define SVC_I3C_MWMSG_SDR 0x0D0
#define SVC_I3C_MRMSG_SDR 0x0D4
#define SVC_I3C_MWMSG_DDR 0x0D8
#define SVC_I3C_MRMSG_DDR 0x0DC
#define SVC_I3C_MDYNADDR 0x0E4
#define SVC_MDYNADDR_VALID BIT(0)
#define SVC_MDYNADDR_ADDR(x) FIELD_PREP(GENMASK(7, 1), (x))
#define SVC_I3C_MAX_DEVS 32
#define SVC_I3C_PM_TIMEOUT_MS 1000
/* This parameter depends on the implementation and may be tuned */
#define SVC_I3C_FIFO_SIZE 16
#define SVC_I3C_PPBAUD_MAX 15
#define SVC_I3C_QUICK_I2C_CLK 4170000
#define SVC_I3C_EVENT_IBI GENMASK(7, 0)
#define SVC_I3C_EVENT_HOTJOIN BIT(31)
/*
* SVC_I3C_QUIRK_FIFO_EMPTY:
* I3C HW stalls the write transfer if the transmit FIFO becomes empty,
* when new data is written to FIFO, I3C HW resumes the transfer but
* the first transmitted data bit may have the wrong value.
* Workaround:
* Fill the FIFO in advance to prevent FIFO from becoming empty.
*/
#define SVC_I3C_QUIRK_FIFO_EMPTY BIT(0)
/*
* SVC_I3C_QUIRK_FLASE_SLVSTART:
* I3C HW may generate an invalid SlvStart event when emitting a STOP.
* If it is a true SlvStart, the MSTATUS state is SLVREQ.
*/
#define SVC_I3C_QUIRK_FALSE_SLVSTART BIT(1)
/*
* SVC_I3C_QUIRK_DAA_CORRUPT:
* When MCONFIG.SKEW=0 and MCONFIG.ODHPP=0, the ENTDAA transaction gets
* corrupted and results in a no repeated-start condition at the end of
* address assignment.
* Workaround:
* Set MCONFIG.SKEW to 1 before initiating the DAA process. After the DAA
* process is completed, return MCONFIG.SKEW to its previous value.
*/
#define SVC_I3C_QUIRK_DAA_CORRUPT BIT(2)
struct svc_i3c_cmd {
u8 addr;
union {
bool rnw;
u8 cmd;
u32 rnw_cmd;
};
u8 *in;
const void *out;
unsigned int len;
unsigned int actual_len;
struct i3c_xfer *xfer;
bool continued;
};
struct svc_i3c_xfer {
struct list_head node;
struct completion comp;
int ret;
unsigned int type;
unsigned int ncmds;
struct svc_i3c_cmd cmds[] __counted_by(ncmds);
};
struct svc_i3c_regs_save {
u32 mconfig;
u32 mdynaddr;
};
struct svc_i3c_drvdata {
u32 quirks;
};
/**
* struct svc_i3c_master - Silvaco I3C Master structure
* @base: I3C master controller
* @dev: Corresponding device
* @regs: Memory mapping
* @saved_regs: Volatile values for PM operations
* @free_slots: Bit array of available slots
* @addrs: Array containing the dynamic addresses of each attached device
* @descs: Array of descriptors, one per attached device
* @hj_work: Hot-join work
* @irq: Main interrupt
* @num_clks: I3C clock number
* @fclk: Fast clock (bus)
* @clks: I3C clock array
* @xferqueue: Transfer queue structure
* @xferqueue.list: List member
* @xferqueue.cur: Current ongoing transfer
* @xferqueue.lock: Queue lock
* @ibi: IBI structure
* @ibi.num_slots: Number of slots available in @ibi.slots
* @ibi.slots: Available IBI slots
* @ibi.tbq_slot: To be queued IBI slot
* @ibi.lock: IBI lock
* @lock: Transfer lock, protect between IBI work thread and callbacks from master
* @drvdata: Driver data
* @enabled_events: Bit masks for enable events (IBI, HotJoin).
* @mctrl_config: Configuration value in SVC_I3C_MCTRL for setting speed back.
*/
struct svc_i3c_master {
struct i3c_master_controller base;
struct device *dev;
void __iomem *regs;
struct svc_i3c_regs_save saved_regs;
u32 free_slots;
u8 addrs[SVC_I3C_MAX_DEVS];
struct i3c_dev_desc *descs[SVC_I3C_MAX_DEVS];
struct work_struct hj_work;
int irq;
int num_clks;
struct clk *fclk;
struct clk_bulk_data *clks;
struct {
struct list_head list;
struct svc_i3c_xfer *cur;
/* Prevent races between transfers */
spinlock_t lock;
} xferqueue;
struct {
unsigned int num_slots;
struct i3c_dev_desc **slots;
struct i3c_ibi_slot *tbq_slot;
/* Prevent races within IBI handlers */
spinlock_t lock;
} ibi;
struct mutex lock;
const struct svc_i3c_drvdata *drvdata;
u32 enabled_events;
u32 mctrl_config;
};
/**
* struct svc_i3c_i2c_dev_data - Device specific data
* @index: Index in the master tables corresponding to this device
* @ibi: IBI slot index in the master structure
* @ibi_pool: IBI pool associated to this device
*/
struct svc_i3c_i2c_dev_data {
u8 index;
int ibi;
struct i3c_generic_ibi_pool *ibi_pool;
};
static inline bool svc_has_quirk(struct svc_i3c_master *master, u32 quirk)
{
return (master->drvdata->quirks & quirk);
}
static inline bool svc_has_daa_corrupt(struct svc_i3c_master *master)
{
return ((master->drvdata->quirks & SVC_I3C_QUIRK_DAA_CORRUPT) &&
!(master->mctrl_config &
(SVC_I3C_MCONFIG_SKEW_MASK | SVC_I3C_MCONFIG_ODHPP(1))));
}
static inline bool is_events_enabled(struct svc_i3c_master *master, u32 mask)
{
return !!(master->enabled_events & mask);
}
static bool svc_i3c_master_error(struct svc_i3c_master *master)
{
u32 mstatus, merrwarn;
mstatus = readl(master->regs + SVC_I3C_MSTATUS);
if (SVC_I3C_MSTATUS_ERRWARN(mstatus)) {
merrwarn = readl(master->regs + SVC_I3C_MERRWARN);
writel(merrwarn, master->regs + SVC_I3C_MERRWARN);
/* Ignore timeout error */
if (merrwarn & SVC_I3C_MERRWARN_TIMEOUT) {
dev_dbg(master->dev, "Warning condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n",
mstatus, merrwarn);
return false;
}
dev_err(master->dev,
"Error condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n",
mstatus, merrwarn);
return true;
}
return false;
}
static void svc_i3c_master_enable_interrupts(struct svc_i3c_master *master, u32 mask)
{
writel(mask, master->regs + SVC_I3C_MINTSET);
}
static void svc_i3c_master_disable_interrupts(struct svc_i3c_master *master)
{
u32 mask = readl(master->regs + SVC_I3C_MINTSET);
writel(mask, master->regs + SVC_I3C_MINTCLR);
}
static void svc_i3c_master_clear_merrwarn(struct svc_i3c_master *master)
{
/* Clear pending warnings */
writel(readl(master->regs + SVC_I3C_MERRWARN),
master->regs + SVC_I3C_MERRWARN);
}
static void svc_i3c_master_flush_fifo(struct svc_i3c_master *master)
{
/* Flush FIFOs */
writel(SVC_I3C_MDATACTRL_FLUSHTB | SVC_I3C_MDATACTRL_FLUSHRB,
master->regs + SVC_I3C_MDATACTRL);
}
static void svc_i3c_master_reset_fifo_trigger(struct svc_i3c_master *master)
{
u32 reg;
/* Set RX and TX tigger levels, flush FIFOs */
reg = SVC_I3C_MDATACTRL_FLUSHTB |
SVC_I3C_MDATACTRL_FLUSHRB |
SVC_I3C_MDATACTRL_UNLOCK_TRIG |
SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL |
SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY;
writel(reg, master->regs + SVC_I3C_MDATACTRL);
}
static void svc_i3c_master_reset(struct svc_i3c_master *master)
{
svc_i3c_master_clear_merrwarn(master);
svc_i3c_master_reset_fifo_trigger(master);
svc_i3c_master_disable_interrupts(master);
}
static inline struct svc_i3c_master *
to_svc_i3c_master(struct i3c_master_controller *master)
{
return container_of(master, struct svc_i3c_master, base);
}
static void svc_i3c_master_hj_work(struct work_struct *work)
{
struct svc_i3c_master *master;
master = container_of(work, struct svc_i3c_master, hj_work);
i3c_master_do_daa(&master->base);
}
static struct i3c_dev_desc *
svc_i3c_master_dev_from_addr(struct svc_i3c_master *master,
unsigned int ibiaddr)
{
int i;
for (i = 0; i < SVC_I3C_MAX_DEVS; i++)
if (master->addrs[i] == ibiaddr)
break;
if (i == SVC_I3C_MAX_DEVS)
return NULL;
return master->descs[i];
}
static bool svc_cmd_is_read(u32 rnw_cmd, u32 type)
{
return (type == SVC_I3C_MCTRL_TYPE_DDR) ? (rnw_cmd & 0x80) : rnw_cmd;
}
static void svc_i3c_master_emit_force_exit(struct svc_i3c_master *master)
{
u32 reg;
writel(SVC_I3C_MCTRL_REQUEST_FORCE_EXIT, master->regs + SVC_I3C_MCTRL);
/*
* Not need check error here because it is never happen at hardware.
* IP just wait for few fclk cycle to complete DDR exit pattern. Even
* though fclk stop, timeout happen here, the whole data actually
* already finish transfer. The next command will be timeout because
* wrong hardware state.
*/
readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, reg,
SVC_I3C_MSTATUS_MCTRLDONE(reg), 0, 1000);
/*
* This delay is necessary after the emission of a stop, otherwise eg.
* repeating IBIs do not get detected. There is a note in the manual
* about it, stating that the stop condition might not be settled
* correctly if a start condition follows too rapidly.
*/
udelay(1);
}
static void svc_i3c_master_emit_stop(struct svc_i3c_master *master)
{
writel(SVC_I3C_MCTRL_REQUEST_STOP, master->regs + SVC_I3C_MCTRL);
/*
* This delay is necessary after the emission of a stop, otherwise eg.
* repeating IBIs do not get detected. There is a note in the manual
* about it, stating that the stop condition might not be settled
* correctly if a start condition follows too rapidly.
*/
udelay(1);
}
static int svc_i3c_master_handle_ibi(struct svc_i3c_master *master,
struct i3c_dev_desc *dev)
{
struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
struct i3c_ibi_slot *slot;
unsigned int count;
u32 mdatactrl;
int ret, val;
u8 *buf;
/*
* Wait for transfer to complete before returning. Otherwise, the EmitStop
* request might be sent when the transfer is not complete.
*/
ret = readl_relaxed_poll_timeout(master->regs + SVC_I3C_MSTATUS, val,
SVC_I3C_MSTATUS_COMPLETE(val), 0, 1000);
if (ret) {
dev_err(master->dev, "Timeout when polling for COMPLETE\n");
return ret;
}
slot = i3c_generic_ibi_get_free_slot(data->ibi_pool);
if (!slot) {
dev_dbg(master->dev, "No free ibi slot, drop the data\n");
writel(SVC_I3C_MDATACTRL_FLUSHRB, master->regs + SVC_I3C_MDATACTRL);
return -ENOSPC;
}
slot->len = 0;
buf = slot->data;
while (SVC_I3C_MSTATUS_RXPEND(readl(master->regs + SVC_I3C_MSTATUS)) &&
slot->len < SVC_I3C_FIFO_SIZE) {
mdatactrl = readl(master->regs + SVC_I3C_MDATACTRL);
count = SVC_I3C_MDATACTRL_RXCOUNT(mdatactrl);
readsb(master->regs + SVC_I3C_MRDATAB, buf, count);
slot->len += count;
buf += count;
}
master->ibi.tbq_slot = slot;
return 0;
}
static int svc_i3c_master_ack_ibi(struct svc_i3c_master *master,
bool mandatory_byte)
{
unsigned int ibi_ack_nack;
u32 reg;
ibi_ack_nack = SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK;
if (mandatory_byte)
ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE;
else
ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE;
writel(ibi_ack_nack, master->regs + SVC_I3C_MCTRL);
return readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, reg,
SVC_I3C_MSTATUS_MCTRLDONE(reg), 1, 1000);
}
static int svc_i3c_master_nack_ibi(struct svc_i3c_master *master)
{
int ret;
u32 reg;
writel(SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK |
SVC_I3C_MCTRL_IBIRESP_NACK,
master->regs + SVC_I3C_MCTRL);
ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, reg,
SVC_I3C_MSTATUS_MCTRLDONE(reg), 1, 1000);
return ret;
}
static int svc_i3c_master_handle_ibi_won(struct svc_i3c_master *master, u32 mstatus)
{
u32 ibitype;
int ret = 0;
ibitype = SVC_I3C_MSTATUS_IBITYPE(mstatus);
writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
/* Hardware can't auto emit NACK for hot join and master request */
switch (ibitype) {
case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN:
case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST:
ret = svc_i3c_master_nack_ibi(master);
}
return ret;
}
static void svc_i3c_master_ibi_isr(struct svc_i3c_master *master)
{
struct svc_i3c_i2c_dev_data *data;
unsigned int ibitype, ibiaddr;
struct i3c_dev_desc *dev;
u32 status, val;
int ret;
/*
* According to I3C spec ver 1.1, 09-Jun-2021, section 5.1.2.5:
*
* The I3C Controller shall hold SCL low while the Bus is in ACK/NACK Phase of I3C/I2C
* transfer. But maximum stall time is 100us. The IRQs have to be disabled to prevent
* schedule during the whole I3C transaction, otherwise, the I3C bus timeout may happen if
* any irq or schedule happen during transaction.
*/
guard(spinlock)(&master->xferqueue.lock);
/*
* IBIWON may be set before SVC_I3C_MCTRL_REQUEST_AUTO_IBI, causing
* readl_relaxed_poll_timeout() to return immediately. Consequently,
* ibitype will be 0 since it was last updated only after the 8th SCL
* cycle, leading to missed client IBI handlers.
*
* A typical scenario is when IBIWON occurs and bus arbitration is lost
* at svc_i3c_master_i3c_xfers().
*
* Clear SVC_I3C_MINT_IBIWON before sending SVC_I3C_MCTRL_REQUEST_AUTO_IBI.
*/
writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
/*
* Write REQUEST_START_ADDR request to emit broadcast address for arbitration,
* instend of using AUTO_IBI.
*
* Using AutoIBI request may cause controller to remain in AutoIBI state when
* there is a glitch on SDA line (high->low->high).
* 1. SDA high->low, raising an interrupt to execute IBI isr.
* 2. SDA low->high.
* 3. IBI isr writes an AutoIBI request.
* 4. The controller will not start AutoIBI process because SDA is not low.
* 5. IBIWON polling times out.
* 6. Controller reamins in AutoIBI state and doesn't accept EmitStop request.
*/
writel(SVC_I3C_MCTRL_REQUEST_START_ADDR |
SVC_I3C_MCTRL_TYPE_I3C |
SVC_I3C_MCTRL_IBIRESP_MANUAL |
SVC_I3C_MCTRL_DIR(SVC_I3C_MCTRL_DIR_WRITE) |
SVC_I3C_MCTRL_ADDR(I3C_BROADCAST_ADDR),
master->regs + SVC_I3C_MCTRL);
/* Wait for IBIWON, should take approximately 100us */
ret = readl_relaxed_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, val,
SVC_I3C_MSTATUS_IBIWON(val), 0, 100);
if (ret) {
dev_err(master->dev, "Timeout when polling for IBIWON\n");
svc_i3c_master_emit_stop(master);
return;
}
status = readl(master->regs + SVC_I3C_MSTATUS);
ibitype = SVC_I3C_MSTATUS_IBITYPE(status);
ibiaddr = SVC_I3C_MSTATUS_IBIADDR(status);
/* Handle the critical responses to IBI's */
switch (ibitype) {
case SVC_I3C_MSTATUS_IBITYPE_IBI:
dev = svc_i3c_master_dev_from_addr(master, ibiaddr);
if (!dev || !is_events_enabled(master, SVC_I3C_EVENT_IBI)) {
svc_i3c_master_nack_ibi(master);
} else {
if (dev->info.bcr & I3C_BCR_IBI_PAYLOAD)
svc_i3c_master_ack_ibi(master, true);
else
svc_i3c_master_ack_ibi(master, false);
svc_i3c_master_handle_ibi(master, dev);
}
break;
case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN:
if (is_events_enabled(master, SVC_I3C_EVENT_HOTJOIN))
svc_i3c_master_ack_ibi(master, false);
else
svc_i3c_master_nack_ibi(master);
break;
case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST:
svc_i3c_master_nack_ibi(master);
break;
default:
break;
}
/*
* If an error happened, we probably got interrupted and the exchange
* timedout. In this case we just drop everything, emit a stop and wait
* for the slave to interrupt again.
*/
if (svc_i3c_master_error(master)) {
if (master->ibi.tbq_slot) {
data = i3c_dev_get_master_data(dev);
i3c_generic_ibi_recycle_slot(data->ibi_pool,
master->ibi.tbq_slot);
master->ibi.tbq_slot = NULL;
}
svc_i3c_master_emit_stop(master);
return;
}
/* Handle the non critical tasks */
switch (ibitype) {
case SVC_I3C_MSTATUS_IBITYPE_IBI:
svc_i3c_master_emit_stop(master);
if (dev) {
i3c_master_queue_ibi(dev, master->ibi.tbq_slot);
master->ibi.tbq_slot = NULL;
}
break;
case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN:
svc_i3c_master_emit_stop(master);
if (is_events_enabled(master, SVC_I3C_EVENT_HOTJOIN))
queue_work(master->base.wq, &master->hj_work);
break;
case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST:
svc_i3c_master_emit_stop(master);
break;
default:
break;
}
}
static irqreturn_t svc_i3c_master_irq_handler(int irq, void *dev_id)
{
struct svc_i3c_master *master = (struct svc_i3c_master *)dev_id;
u32 active = readl(master->regs + SVC_I3C_MSTATUS);
if (!SVC_I3C_MSTATUS_SLVSTART(active))
return IRQ_NONE;
/* Clear the interrupt status */
writel(SVC_I3C_MINT_SLVSTART, master->regs + SVC_I3C_MSTATUS);
/* Ignore the false event */
if (svc_has_quirk(master, SVC_I3C_QUIRK_FALSE_SLVSTART) &&
!SVC_I3C_MSTATUS_STATE_SLVREQ(active))
return IRQ_HANDLED;
/*
* The SDA line remains low until the request is processed.
* Receive the request in the interrupt context to respond promptly
* and restore the bus to idle state.
*/
svc_i3c_master_ibi_isr(master);
return IRQ_HANDLED;
}
static int svc_i3c_master_set_speed(struct i3c_master_controller *m,
enum i3c_open_drain_speed speed)
{
struct svc_i3c_master *master = to_svc_i3c_master(m);
struct i3c_bus *bus = i3c_master_get_bus(&master->base);
u32 ppbaud, odbaud, odhpp, mconfig;
unsigned long fclk_rate;
int ret;
ret = pm_runtime_resume_and_get(master->dev);
if (ret < 0) {
dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
return ret;
}
switch (speed) {
case I3C_OPEN_DRAIN_SLOW_SPEED:
fclk_rate = clk_get_rate(master->fclk);
if (!fclk_rate) {
ret = -EINVAL;
goto rpm_out;
}
/*
* Set 50% duty-cycle I2C speed to I3C OPEN-DRAIN mode, so the first
* broadcast address is visible to all I2C/I3C devices on the I3C bus.
* I3C device working as a I2C device will turn off its 50ns Spike
* Filter to change to I3C mode.
*/
mconfig = master->mctrl_config;
ppbaud = FIELD_GET(GENMASK(11, 8), mconfig);
odhpp = 0;
odbaud = DIV_ROUND_UP(fclk_rate, bus->scl_rate.i2c * (2 + 2 * ppbaud)) - 1;
mconfig &= ~GENMASK(24, 16);
mconfig |= SVC_I3C_MCONFIG_ODBAUD(odbaud) | SVC_I3C_MCONFIG_ODHPP(odhpp);
writel(mconfig, master->regs + SVC_I3C_MCONFIG);
break;
case I3C_OPEN_DRAIN_NORMAL_SPEED:
writel(master->mctrl_config, master->regs + SVC_I3C_MCONFIG);
break;
}
rpm_out:
pm_runtime_put_autosuspend(master->dev);
return ret;
}
static int svc_i3c_master_bus_init(struct i3c_master_controller *m)
{
struct svc_i3c_master *master = to_svc_i3c_master(m);
struct i3c_bus *bus = i3c_master_get_bus(m);
struct i3c_device_info info = {};
unsigned long fclk_rate, fclk_period_ns;
unsigned long i2c_period_ns, i2c_scl_rate, i3c_scl_rate;
unsigned int high_period_ns, od_low_period_ns;
u32 ppbaud, pplow, odhpp, odbaud, odstop, i2cbaud, reg;
int ret;
ret = pm_runtime_resume_and_get(master->dev);
if (ret < 0) {
dev_err(master->dev,
"<%s> cannot resume i3c bus master, err: %d\n",
__func__, ret);
return ret;
}
/* Timings derivation */
fclk_rate = clk_get_rate(master->fclk);
if (!fclk_rate) {
ret = -EINVAL;
goto rpm_out;
}
fclk_period_ns = DIV_ROUND_UP(1000000000, fclk_rate);
i2c_period_ns = DIV_ROUND_UP(1000000000, bus->scl_rate.i2c);
i2c_scl_rate = bus->scl_rate.i2c;
i3c_scl_rate = bus->scl_rate.i3c;
/*
* Using I3C Push-Pull mode, target is 12.5MHz/80ns period.
* Simplest configuration is using a 50% duty-cycle of 40ns.
*/
ppbaud = DIV_ROUND_UP(fclk_rate / 2, i3c_scl_rate) - 1;
pplow = 0;
/*
* Using I3C Open-Drain mode, target is 4.17MHz/240ns with a
* duty-cycle tuned so that high levels are filetered out by
* the 50ns filter (target being 40ns).
*/
odhpp = 1;
high_period_ns = (ppbaud + 1) * fclk_period_ns;
odbaud = DIV_ROUND_UP(fclk_rate, SVC_I3C_QUICK_I2C_CLK * (1 + ppbaud)) - 2;
od_low_period_ns = (odbaud + 1) * high_period_ns;
switch (bus->mode) {
case I3C_BUS_MODE_PURE:
i2cbaud = 0;
odstop = 0;
break;
case I3C_BUS_MODE_MIXED_FAST:
/*
* Using I2C Fm+ mode, target is 1MHz/1000ns, the difference
* between the high and low period does not really matter.
*/
i2cbaud = DIV_ROUND_UP(i2c_period_ns, od_low_period_ns) - 2;
odstop = 1;
break;
case I3C_BUS_MODE_MIXED_LIMITED:
case I3C_BUS_MODE_MIXED_SLOW:
/* I3C PP + I3C OP + I2C OP both use i2c clk rate */
if (ppbaud > SVC_I3C_PPBAUD_MAX) {
ppbaud = SVC_I3C_PPBAUD_MAX;
pplow = DIV_ROUND_UP(fclk_rate, i3c_scl_rate) - (2 + 2 * ppbaud);
}
high_period_ns = (ppbaud + 1) * fclk_period_ns;
odhpp = 0;
odbaud = DIV_ROUND_UP(fclk_rate, i2c_scl_rate * (2 + 2 * ppbaud)) - 1;
od_low_period_ns = (odbaud + 1) * high_period_ns;
i2cbaud = DIV_ROUND_UP(i2c_period_ns, od_low_period_ns) - 2;
odstop = 1;
break;
default:
goto rpm_out;
}
reg = SVC_I3C_MCONFIG_MASTER_EN |
SVC_I3C_MCONFIG_DISTO(0) |
SVC_I3C_MCONFIG_HKEEP(0) |
SVC_I3C_MCONFIG_ODSTOP(odstop) |
SVC_I3C_MCONFIG_PPBAUD(ppbaud) |
SVC_I3C_MCONFIG_PPLOW(pplow) |
SVC_I3C_MCONFIG_ODBAUD(odbaud) |
SVC_I3C_MCONFIG_ODHPP(odhpp) |
SVC_I3C_MCONFIG_SKEW(0) |
SVC_I3C_MCONFIG_I2CBAUD(i2cbaud);
writel(reg, master->regs + SVC_I3C_MCONFIG);
master->mctrl_config = reg;
/* Master core's registration */
ret = i3c_master_get_free_addr(m, 0);
if (ret < 0)
goto rpm_out;
info.dyn_addr = ret;
info.hdr_cap = I3C_CCC_HDR_MODE(I3C_HDR_DDR);
writel(SVC_MDYNADDR_VALID | SVC_MDYNADDR_ADDR(info.dyn_addr),
master->regs + SVC_I3C_MDYNADDR);
ret = i3c_master_set_info(&master->base, &info);
if (ret)
goto rpm_out;
rpm_out:
pm_runtime_put_autosuspend(master->dev);
return ret;
}
static void svc_i3c_master_bus_cleanup(struct i3c_master_controller *m)
{
struct svc_i3c_master *master = to_svc_i3c_master(m);
int ret;
ret = pm_runtime_resume_and_get(master->dev);
if (ret < 0) {
dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
return;
}
svc_i3c_master_disable_interrupts(master);
/* Disable master */
writel(0, master->regs + SVC_I3C_MCONFIG);
pm_runtime_put_autosuspend(master->dev);
}
static int svc_i3c_master_reserve_slot(struct svc_i3c_master *master)
{
unsigned int slot;
if (!(master->free_slots & GENMASK(SVC_I3C_MAX_DEVS - 1, 0)))
return -ENOSPC;
slot = ffs(master->free_slots) - 1;
master->free_slots &= ~BIT(slot);
return slot;
}
static void svc_i3c_master_release_slot(struct svc_i3c_master *master,
unsigned int slot)
{
master->free_slots |= BIT(slot);
}
static int svc_i3c_master_attach_i3c_dev(struct i3c_dev_desc *dev)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct svc_i3c_master *master = to_svc_i3c_master(m);
struct svc_i3c_i2c_dev_data *data;
int slot;
slot = svc_i3c_master_reserve_slot(master);
if (slot < 0)
return slot;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data) {
svc_i3c_master_release_slot(master, slot);
return -ENOMEM;
}
data->ibi = -1;
data->index = slot;
master->addrs[slot] = dev->info.dyn_addr ? dev->info.dyn_addr :
dev->info.static_addr;
master->descs[slot] = dev;
i3c_dev_set_master_data(dev, data);
return 0;
}
static int svc_i3c_master_reattach_i3c_dev(struct i3c_dev_desc *dev,
u8 old_dyn_addr)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct svc_i3c_master *master = to_svc_i3c_master(m);
struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
master->addrs[data->index] = dev->info.dyn_addr ? dev->info.dyn_addr :
dev->info.static_addr;
return 0;
}
static void svc_i3c_master_detach_i3c_dev(struct i3c_dev_desc *dev)
{
struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct svc_i3c_master *master = to_svc_i3c_master(m);
master->addrs[data->index] = 0;
svc_i3c_master_release_slot(master, data->index);
kfree(data);
}
static int svc_i3c_master_attach_i2c_dev(struct i2c_dev_desc *dev)
{
struct i3c_master_controller *m = i2c_dev_get_master(dev);
struct svc_i3c_master *master = to_svc_i3c_master(m);
struct svc_i3c_i2c_dev_data *data;
int slot;
slot = svc_i3c_master_reserve_slot(master);
if (slot < 0)
return slot;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data) {
svc_i3c_master_release_slot(master, slot);
return -ENOMEM;
}
data->index = slot;
master->addrs[slot] = dev->addr;
i2c_dev_set_master_data(dev, data);
return 0;
}
static void svc_i3c_master_detach_i2c_dev(struct i2c_dev_desc *dev)
{
struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev);
struct i3c_master_controller *m = i2c_dev_get_master(dev);
struct svc_i3c_master *master = to_svc_i3c_master(m);
svc_i3c_master_release_slot(master, data->index);
kfree(data);
}
static int svc_i3c_master_readb(struct svc_i3c_master *master, u8 *dst,
unsigned int len)
{
int ret, i;
u32 reg;
for (i = 0; i < len; i++) {
ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
reg,
SVC_I3C_MSTATUS_RXPEND(reg),
0, 1000);
if (ret)
return ret;
dst[i] = readl(master->regs + SVC_I3C_MRDATAB);
}
return 0;
}
static int svc_i3c_master_do_daa_locked(struct svc_i3c_master *master,
u8 *addrs, unsigned int *count)
{
u64 prov_id[SVC_I3C_MAX_DEVS] = {}, nacking_prov_id = 0;
unsigned int dev_nb = 0, last_addr = 0, dyn_addr = 0;
u32 reg;
int ret, i;
svc_i3c_master_flush_fifo(master);
while (true) {
/* clean SVC_I3C_MINT_IBIWON w1c bits */
writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
/* SVC_I3C_MCTRL_REQUEST_PROC_DAA have two mode, ENTER DAA or PROCESS DAA.
*
* ENTER DAA:
* 1 will issue START, 7E, ENTDAA, and then emits 7E/R to process first target.
* 2 Stops just before the new Dynamic Address (DA) is to be emitted.
*
* PROCESS DAA:
* 1 The DA is written using MWDATAB or ADDR bits 6:0.
* 2 ProcessDAA is requested again to write the new address, and then starts the
* next (START, 7E, ENTDAA) unless marked to STOP; an MSTATUS indicating NACK
* means DA was not accepted (e.g. parity error). If PROCESSDAA is NACKed on the
* 7E/R, which means no more Slaves need a DA, then a COMPLETE will be signaled
* (along with DONE), and a STOP issued automatically.
*/
writel(SVC_I3C_MCTRL_REQUEST_PROC_DAA |
SVC_I3C_MCTRL_TYPE_I3C |
SVC_I3C_MCTRL_IBIRESP_NACK |
SVC_I3C_MCTRL_DIR(SVC_I3C_MCTRL_DIR_WRITE),
master->regs + SVC_I3C_MCTRL);
/*
* Either one slave will send its ID, or the assignment process
* is done.
*/
ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
reg,
SVC_I3C_MSTATUS_RXPEND(reg) |
SVC_I3C_MSTATUS_MCTRLDONE(reg),
1, 1000);
if (ret)
break;
if (SVC_I3C_MSTATUS_RXPEND(reg)) {
u8 data[6];
/*
* One slave sends its ID to request for address assignment,
* prefilling the dynamic address can reduce SCL clock stalls
* and also fix the SVC_I3C_QUIRK_FIFO_EMPTY quirk.
*
* Ideally, prefilling before the processDAA command is better.
* However, it requires an additional check to write the dyn_addr
* at the right time because the driver needs to write the processDAA
* command twice for one assignment.
* Prefilling here is safe and efficient because the FIFO starts
* filling within a few hundred nanoseconds, which is significantly
* faster compared to the 64 SCL clock cycles.
*/
ret = i3c_master_get_free_addr(&master->base, last_addr + 1);
if (ret < 0)
break;
dyn_addr = ret;
writel(dyn_addr, master->regs + SVC_I3C_MWDATAB);
/*
* We only care about the 48-bit provisioned ID yet to
* be sure a device does not nack an address twice.
* Otherwise, we would just need to flush the RX FIFO.
*/
ret = svc_i3c_master_readb(master, data, 6);
if (ret)
break;
for (i = 0; i < 6; i++)
prov_id[dev_nb] |= (u64)(data[i]) << (8 * (5 - i));
/* We do not care about the BCR and DCR yet */
ret = svc_i3c_master_readb(master, data, 2);
if (ret)
break;
} else if (SVC_I3C_MSTATUS_IBIWON(reg)) {
ret = svc_i3c_master_handle_ibi_won(master, reg);
if (ret)
break;
continue;
} else if (SVC_I3C_MSTATUS_MCTRLDONE(reg)) {
if (SVC_I3C_MSTATUS_STATE_IDLE(reg) &&
SVC_I3C_MSTATUS_COMPLETE(reg)) {
/*
* All devices received and acked they dynamic
* address, this is the natural end of the DAA
* procedure.
*
* Hardware will auto emit STOP at this case.
*/
*count = dev_nb;
return 0;
} else if (SVC_I3C_MSTATUS_NACKED(reg)) {
/* No I3C devices attached */
if (dev_nb == 0) {
/*
* Hardware can't treat first NACK for ENTAA as normal
* COMPLETE. So need manual emit STOP.
*/
ret = 0;
*count = 0;
break;
}
/*
* A slave device nacked the address, this is
* allowed only once, DAA will be stopped and
* then resumed. The same device is supposed to
* answer again immediately and shall ack the
* address this time.
*/
if (prov_id[dev_nb] == nacking_prov_id) {
ret = -EIO;
break;
}
dev_nb--;
nacking_prov_id = prov_id[dev_nb];
svc_i3c_master_emit_stop(master);
continue;
} else {
break;
}
}
/* Wait for the slave to be ready to receive its address */
ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
reg,
SVC_I3C_MSTATUS_MCTRLDONE(reg) &&
SVC_I3C_MSTATUS_STATE_DAA(reg) &&
SVC_I3C_MSTATUS_BETWEEN(reg),
0, 1000);
if (ret)
break;
addrs[dev_nb] = dyn_addr;
dev_dbg(master->dev, "DAA: device %d assigned to 0x%02x\n",
dev_nb, addrs[dev_nb]);
last_addr = addrs[dev_nb++];
}
/* Need manual issue STOP except for Complete condition */
svc_i3c_master_emit_stop(master);
svc_i3c_master_flush_fifo(master);
return ret;
}
static int svc_i3c_update_ibirules(struct svc_i3c_master *master)
{
struct i3c_dev_desc *dev;
u32 reg_mbyte = 0, reg_nobyte = SVC_I3C_IBIRULES_NOBYTE;
unsigned int mbyte_addr_ok = 0, mbyte_addr_ko = 0, nobyte_addr_ok = 0,
nobyte_addr_ko = 0;
bool list_mbyte = false, list_nobyte = false;
/* Create the IBIRULES register for both cases */
i3c_bus_for_each_i3cdev(&master->base.bus, dev) {
if (!(dev->info.bcr & I3C_BCR_IBI_REQ_CAP))
continue;
if (dev->info.bcr & I3C_BCR_IBI_PAYLOAD) {
reg_mbyte |= SVC_I3C_IBIRULES_ADDR(mbyte_addr_ok,
dev->info.dyn_addr);
/* IBI rules cannot be applied to devices with MSb=1 */
if (dev->info.dyn_addr & BIT(7))
mbyte_addr_ko++;
else
mbyte_addr_ok++;
} else {
reg_nobyte |= SVC_I3C_IBIRULES_ADDR(nobyte_addr_ok,
dev->info.dyn_addr);
/* IBI rules cannot be applied to devices with MSb=1 */
if (dev->info.dyn_addr & BIT(7))
nobyte_addr_ko++;
else
nobyte_addr_ok++;
}
}
/* Device list cannot be handled by hardware */
if (!mbyte_addr_ko && mbyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS)
list_mbyte = true;
if (!nobyte_addr_ko && nobyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS)
list_nobyte = true;
/* No list can be properly handled, return an error */
if (!list_mbyte && !list_nobyte)
return -ERANGE;
/* Pick the first list that can be handled by hardware, randomly */
if (list_mbyte)
writel(reg_mbyte, master->regs + SVC_I3C_IBIRULES);
else
writel(reg_nobyte, master->regs + SVC_I3C_IBIRULES);
return 0;
}
static int svc_i3c_master_do_daa(struct i3c_master_controller *m)
{
struct svc_i3c_master *master = to_svc_i3c_master(m);
u8 addrs[SVC_I3C_MAX_DEVS];
unsigned long flags;
unsigned int dev_nb;
int ret, i;
ret = pm_runtime_resume_and_get(master->dev);
if (ret < 0) {
dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
return ret;
}
spin_lock_irqsave(&master->xferqueue.lock, flags);
if (svc_has_daa_corrupt(master))
writel(master->mctrl_config | SVC_I3C_MCONFIG_SKEW(1),
master->regs + SVC_I3C_MCONFIG);
ret = svc_i3c_master_do_daa_locked(master, addrs, &dev_nb);
if (svc_has_daa_corrupt(master))
writel(master->mctrl_config, master->regs + SVC_I3C_MCONFIG);
spin_unlock_irqrestore(&master->xferqueue.lock, flags);
svc_i3c_master_clear_merrwarn(master);
if (ret)
goto rpm_out;
/*
* Register all devices who participated to the core
*
* If two devices (A and B) are detected in DAA and address 0xa is assigned to
* device A and 0xb to device B, a failure in i3c_master_add_i3c_dev_locked()
* for device A (addr: 0xa) could prevent device B (addr: 0xb) from being
* registered on the bus. The I3C stack might still consider 0xb a free
* address. If a subsequent Hotjoin occurs, 0xb might be assigned to Device A,
* causing both devices A and B to use the same address 0xb, violating the I3C
* specification.
*
* The return value for i3c_master_add_i3c_dev_locked() should not be checked
* because subsequent steps will scan the entire I3C bus, independent of
* whether i3c_master_add_i3c_dev_locked() returns success.
*
* If device A registration fails, there is still a chance to register device
* B. i3c_master_add_i3c_dev_locked() can reset DAA if a failure occurs while
* retrieving device information.
*/
for (i = 0; i < dev_nb; i++)
i3c_master_add_i3c_dev_locked(m, addrs[i]);
/* Configure IBI auto-rules */
ret = svc_i3c_update_ibirules(master);
if (ret)
dev_err(master->dev, "Cannot handle such a list of devices");
rpm_out:
pm_runtime_put_autosuspend(master->dev);
return ret;
}
static int svc_i3c_master_read(struct svc_i3c_master *master,
u8 *in, unsigned int len)
{
int offset = 0, i;
u32 mdctrl, mstatus;
bool completed = false;
unsigned int count;
unsigned long start = jiffies;
while (!completed) {
mstatus = readl(master->regs + SVC_I3C_MSTATUS);
if (SVC_I3C_MSTATUS_COMPLETE(mstatus) != 0)
completed = true;
if (time_after(jiffies, start + msecs_to_jiffies(1000))) {
dev_dbg(master->dev, "I3C read timeout\n");
return -ETIMEDOUT;
}
mdctrl = readl(master->regs + SVC_I3C_MDATACTRL);
count = SVC_I3C_MDATACTRL_RXCOUNT(mdctrl);
if (offset + count > len) {
dev_err(master->dev, "I3C receive length too long!\n");
return -EINVAL;
}
for (i = 0; i < count; i++)
in[offset + i] = readl(master->regs + SVC_I3C_MRDATAB);
offset += count;
}
return offset;
}
static int svc_i3c_master_write(struct svc_i3c_master *master,
const u8 *out, unsigned int len)
{
int offset = 0, ret;
u32 mdctrl;
while (offset < len) {
ret = readl_poll_timeout(master->regs + SVC_I3C_MDATACTRL,
mdctrl,
!(mdctrl & SVC_I3C_MDATACTRL_TXFULL),
0, 1000);
if (ret)
return ret;
/*
* The last byte to be sent over the bus must either have the
* "end" bit set or be written in MWDATABE.
*/
if (likely(offset < (len - 1)))
writel(out[offset++], master->regs + SVC_I3C_MWDATAB);
else
writel(out[offset++], master->regs + SVC_I3C_MWDATABE);
}
return 0;
}
static int svc_i3c_master_xfer(struct svc_i3c_master *master,
u32 rnw_cmd, unsigned int xfer_type, u8 addr,
u8 *in, const u8 *out, unsigned int xfer_len,
unsigned int *actual_len, bool continued, bool repeat_start)
{
bool rnw = svc_cmd_is_read(rnw_cmd, xfer_type);
int retry = repeat_start ? 1 : 2;
u32 reg;
int ret;
/* clean SVC_I3C_MINT_IBIWON w1c bits */
writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
if (xfer_type == SVC_I3C_MCTRL_TYPE_DDR) {
/* DDR command need prefill into FIFO */
writel(rnw_cmd, master->regs + SVC_I3C_MWDATAB);
if (!rnw) {
/* write data also need prefill into FIFO */
ret = svc_i3c_master_write(master, out, xfer_len);
if (ret)
goto emit_stop;
}
}
while (retry--) {
writel(SVC_I3C_MCTRL_REQUEST_START_ADDR |
xfer_type |
SVC_I3C_MCTRL_IBIRESP_NACK |
SVC_I3C_MCTRL_DIR(rnw) |
SVC_I3C_MCTRL_ADDR(addr) |
SVC_I3C_MCTRL_RDTERM(*actual_len),
master->regs + SVC_I3C_MCTRL);
/*
* The entire transaction can consist of multiple write transfers.
* Prefilling before EmitStartAddr causes the data to be emitted
* immediately, becoming part of the previous transfer.
* The only way to work around this hardware issue is to let the
* FIFO start filling as soon as possible after EmitStartAddr.
*/
if (svc_has_quirk(master, SVC_I3C_QUIRK_FIFO_EMPTY) && !rnw && xfer_len) {
u32 space, end, len;
reg = readl(master->regs + SVC_I3C_MDATACTRL);
space = SVC_I3C_FIFO_SIZE - SVC_I3C_MDATACTRL_TXCOUNT(reg);
if (space) {
end = xfer_len > space ? 0 : SVC_I3C_MWDATAB_END;
len = min_t(u32, xfer_len, space);
writesb(master->regs + SVC_I3C_MWDATAB1, out, len - 1);
/* Mark END bit if this is the last byte */
writel(out[len - 1] | end, master->regs + SVC_I3C_MWDATAB);
xfer_len -= len;
out += len;
}
}
ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
SVC_I3C_MSTATUS_MCTRLDONE(reg), 0, 1000);
if (ret)
goto emit_stop;
/*
* According to I3C spec ver 1.1.1, 5.1.2.2.3 Consequence of Controller Starting a
* Frame with I3C Target Address.
*
* The I3C Controller normally should start a Frame, the Address may be arbitrated,
* and so the Controller shall monitor to see whether an In-Band Interrupt request,
* a Controller Role Request (i.e., Secondary Controller requests to become the
* Active Controller), or a Hot-Join Request has been made.
*
* If missed IBIWON check, the wrong data will be return. When IBIWON happen, issue
* repeat start. Address arbitrate only happen at START, never happen at REPEAT
* start.
*/
if (SVC_I3C_MSTATUS_IBIWON(reg)) {
ret = svc_i3c_master_handle_ibi_won(master, reg);
if (ret)
goto emit_stop;
continue;
}
if (readl(master->regs + SVC_I3C_MERRWARN) & SVC_I3C_MERRWARN_NACK) {
/*
* According to I3C Spec 1.1.1, 11-Jun-2021, section: 5.1.2.2.3.
* If the Controller chooses to start an I3C Message with an I3C Dynamic
* Address, then special provisions shall be made because that same I3C
* Target may be initiating an IBI or a Controller Role Request. So, one of
* three things may happen: (skip 1, 2)
*
* 3. The Addresses match and the RnW bits also match, and so neither
* Controller nor Target will ACK since both are expecting the other side to
* provide ACK. As a result, each side might think it had "won" arbitration,
* but neither side would continue, as each would subsequently see that the
* other did not provide ACK.
* ...
* For either value of RnW: Due to the NACK, the Controller shall defer the
* Private Write or Private Read, and should typically transmit the Target
* Address again after a Repeated START (i.e., the next one or any one prior
* to a STOP in the Frame). Since the Address Header following a Repeated
* START is not arbitrated, the Controller will always win (see Section
* 5.1.2.2.4).
*/
if (retry && addr != 0x7e) {
writel(SVC_I3C_MERRWARN_NACK, master->regs + SVC_I3C_MERRWARN);
} else {
ret = -ENXIO;
*actual_len = 0;
goto emit_stop;
}
} else {
break;
}
}
if (rnw)
ret = svc_i3c_master_read(master, in, xfer_len);
else if (xfer_type != SVC_I3C_MCTRL_TYPE_DDR)
ret = svc_i3c_master_write(master, out, xfer_len);
if (ret < 0)
goto emit_stop;
if (rnw)
*actual_len = ret;
ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
SVC_I3C_MSTATUS_COMPLETE(reg), 0, 1000);
if (ret)
goto emit_stop;
if (xfer_type == SVC_I3C_MCTRL_TYPE_DDR &&
(readl(master->regs + SVC_I3C_MERRWARN) & SVC_I3C_MERRWARN_CRC)) {
ret = -ENXIO;
goto emit_stop;
}
writel(SVC_I3C_MINT_COMPLETE, master->regs + SVC_I3C_MSTATUS);
if (!continued) {
if (xfer_type != SVC_I3C_MCTRL_TYPE_DDR)
svc_i3c_master_emit_stop(master);
else
svc_i3c_master_emit_force_exit(master);
/* Wait idle if stop is sent. */
readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
SVC_I3C_MSTATUS_STATE_IDLE(reg), 0, 1000);
}
return 0;
emit_stop:
if (xfer_type != SVC_I3C_MCTRL_TYPE_DDR)
svc_i3c_master_emit_stop(master);
else
svc_i3c_master_emit_force_exit(master);
svc_i3c_master_clear_merrwarn(master);
svc_i3c_master_flush_fifo(master);
return ret;
}
static struct svc_i3c_xfer *
svc_i3c_master_alloc_xfer(struct svc_i3c_master *master, unsigned int ncmds)
{
struct svc_i3c_xfer *xfer;
xfer = kzalloc(struct_size(xfer, cmds, ncmds), GFP_KERNEL);
if (!xfer)
return NULL;
INIT_LIST_HEAD(&xfer->node);
xfer->ncmds = ncmds;
xfer->ret = -ETIMEDOUT;
return xfer;
}
static void svc_i3c_master_free_xfer(struct svc_i3c_xfer *xfer)
{
kfree(xfer);
}
static void svc_i3c_master_dequeue_xfer_locked(struct svc_i3c_master *master,
struct svc_i3c_xfer *xfer)
{
if (master->xferqueue.cur == xfer)
master->xferqueue.cur = NULL;
else
list_del_init(&xfer->node);
}
static void svc_i3c_master_dequeue_xfer(struct svc_i3c_master *master,
struct svc_i3c_xfer *xfer)
{
unsigned long flags;
spin_lock_irqsave(&master->xferqueue.lock, flags);
svc_i3c_master_dequeue_xfer_locked(master, xfer);
spin_unlock_irqrestore(&master->xferqueue.lock, flags);
}
static int i3c_mode_to_svc_type(enum i3c_xfer_mode mode)
{
return (mode == I3C_SDR) ? SVC_I3C_MCTRL_TYPE_I3C : SVC_I3C_MCTRL_TYPE_DDR;
}
static void svc_i3c_master_start_xfer_locked(struct svc_i3c_master *master)
{
struct svc_i3c_xfer *xfer = master->xferqueue.cur;
int ret, i;
if (!xfer)
return;
svc_i3c_master_clear_merrwarn(master);
svc_i3c_master_flush_fifo(master);
for (i = 0; i < xfer->ncmds; i++) {
struct svc_i3c_cmd *cmd = &xfer->cmds[i];
ret = svc_i3c_master_xfer(master, cmd->rnw_cmd, xfer->type,
cmd->addr, cmd->in, cmd->out,
cmd->len, &cmd->actual_len,
cmd->continued, i > 0);
/* cmd->xfer is NULL if I2C or CCC transfer */
if (cmd->xfer)
cmd->xfer->actual_len = cmd->actual_len;
if (ret)
break;
}
xfer->ret = ret;
complete(&xfer->comp);
if (ret < 0)
svc_i3c_master_dequeue_xfer_locked(master, xfer);
xfer = list_first_entry_or_null(&master->xferqueue.list,
struct svc_i3c_xfer,
node);
if (xfer)
list_del_init(&xfer->node);
master->xferqueue.cur = xfer;
svc_i3c_master_start_xfer_locked(master);
}
static void svc_i3c_master_enqueue_xfer(struct svc_i3c_master *master,
struct svc_i3c_xfer *xfer)
{
unsigned long flags;
int ret;
ret = pm_runtime_resume_and_get(master->dev);
if (ret < 0) {
dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
return;
}
init_completion(&xfer->comp);
spin_lock_irqsave(&master->xferqueue.lock, flags);
if (master->xferqueue.cur) {
list_add_tail(&xfer->node, &master->xferqueue.list);
} else {
master->xferqueue.cur = xfer;
svc_i3c_master_start_xfer_locked(master);
}
spin_unlock_irqrestore(&master->xferqueue.lock, flags);
pm_runtime_put_autosuspend(master->dev);
}
static bool
svc_i3c_master_supports_ccc_cmd(struct i3c_master_controller *master,
const struct i3c_ccc_cmd *cmd)
{
/* No software support for CCC commands targeting more than one slave */
return (cmd->ndests == 1);
}
static int svc_i3c_master_send_bdcast_ccc_cmd(struct svc_i3c_master *master,
struct i3c_ccc_cmd *ccc)
{
unsigned int xfer_len = ccc->dests[0].payload.len + 1;
struct svc_i3c_xfer *xfer;
struct svc_i3c_cmd *cmd;
u8 *buf;
int ret;
xfer = svc_i3c_master_alloc_xfer(master, 1);
if (!xfer)
return -ENOMEM;
buf = kmalloc(xfer_len, GFP_KERNEL);
if (!buf) {
svc_i3c_master_free_xfer(xfer);
return -ENOMEM;
}
buf[0] = ccc->id;
memcpy(&buf[1], ccc->dests[0].payload.data, ccc->dests[0].payload.len);
xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
cmd = &xfer->cmds[0];
cmd->addr = ccc->dests[0].addr;
cmd->rnw = ccc->rnw;
cmd->in = NULL;
cmd->out = buf;
cmd->len = xfer_len;
cmd->actual_len = 0;
cmd->continued = false;
mutex_lock(&master->lock);
svc_i3c_master_enqueue_xfer(master, xfer);
if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
svc_i3c_master_dequeue_xfer(master, xfer);
mutex_unlock(&master->lock);
ret = xfer->ret;
kfree(buf);
svc_i3c_master_free_xfer(xfer);
return ret;
}
static int svc_i3c_master_send_direct_ccc_cmd(struct svc_i3c_master *master,
struct i3c_ccc_cmd *ccc)
{
unsigned int xfer_len = ccc->dests[0].payload.len;
unsigned int actual_len = ccc->rnw ? xfer_len : 0;
struct svc_i3c_xfer *xfer;
struct svc_i3c_cmd *cmd;
int ret;
xfer = svc_i3c_master_alloc_xfer(master, 2);
if (!xfer)
return -ENOMEM;
xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
/* Broadcasted message */
cmd = &xfer->cmds[0];
cmd->addr = I3C_BROADCAST_ADDR;
cmd->rnw = 0;
cmd->in = NULL;
cmd->out = &ccc->id;
cmd->len = 1;
cmd->actual_len = 0;
cmd->continued = true;
/* Directed message */
cmd = &xfer->cmds[1];
cmd->addr = ccc->dests[0].addr;
cmd->rnw = ccc->rnw;
cmd->in = ccc->rnw ? ccc->dests[0].payload.data : NULL;
cmd->out = ccc->rnw ? NULL : ccc->dests[0].payload.data;
cmd->len = xfer_len;
cmd->actual_len = actual_len;
cmd->continued = false;
mutex_lock(&master->lock);
svc_i3c_master_enqueue_xfer(master, xfer);
if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
svc_i3c_master_dequeue_xfer(master, xfer);
mutex_unlock(&master->lock);
if (cmd->actual_len != xfer_len)
ccc->dests[0].payload.len = cmd->actual_len;
ret = xfer->ret;
svc_i3c_master_free_xfer(xfer);
return ret;
}
static int svc_i3c_master_send_ccc_cmd(struct i3c_master_controller *m,
struct i3c_ccc_cmd *cmd)
{
struct svc_i3c_master *master = to_svc_i3c_master(m);
bool broadcast = cmd->id < 0x80;
int ret;
if (broadcast)
ret = svc_i3c_master_send_bdcast_ccc_cmd(master, cmd);
else
ret = svc_i3c_master_send_direct_ccc_cmd(master, cmd);
if (ret)
cmd->err = I3C_ERROR_M2;
return ret;
}
static int svc_i3c_master_i3c_xfers(struct i3c_dev_desc *dev, struct i3c_xfer *xfers,
int nxfers, enum i3c_xfer_mode mode)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct svc_i3c_master *master = to_svc_i3c_master(m);
struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
struct svc_i3c_xfer *xfer;
int ret, i;
if (mode != I3C_SDR) {
/*
* Only support data size less than FIFO SIZE when using DDR
* mode. First entry is cmd in FIFO, so actual available FIFO
* for data is SVC_I3C_FIFO_SIZE - 2 since DDR only supports
* even length.
*/
for (i = 0; i < nxfers; i++)
if (xfers[i].len > SVC_I3C_FIFO_SIZE - 2)
return -EINVAL;
}
xfer = svc_i3c_master_alloc_xfer(master, nxfers);
if (!xfer)
return -ENOMEM;
xfer->type = i3c_mode_to_svc_type(mode);
for (i = 0; i < nxfers; i++) {
u32 rnw_cmd = (mode == I3C_SDR) ? xfers[i].rnw : xfers[i].cmd;
bool rnw = svc_cmd_is_read(rnw_cmd, xfer->type);
struct svc_i3c_cmd *cmd = &xfer->cmds[i];
cmd->xfer = &xfers[i];
cmd->addr = master->addrs[data->index];
cmd->rnw_cmd = rnw_cmd;
cmd->in = rnw ? xfers[i].data.in : NULL;
cmd->out = rnw ? NULL : xfers[i].data.out;
cmd->len = xfers[i].len;
cmd->actual_len = rnw ? xfers[i].len : 0;
cmd->continued = (i + 1) < nxfers;
}
mutex_lock(&master->lock);
svc_i3c_master_enqueue_xfer(master, xfer);
if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
svc_i3c_master_dequeue_xfer(master, xfer);
mutex_unlock(&master->lock);
ret = xfer->ret;
svc_i3c_master_free_xfer(xfer);
return ret;
}
static int svc_i3c_master_i2c_xfers(struct i2c_dev_desc *dev,
struct i2c_msg *xfers,
int nxfers)
{
struct i3c_master_controller *m = i2c_dev_get_master(dev);
struct svc_i3c_master *master = to_svc_i3c_master(m);
struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev);
struct svc_i3c_xfer *xfer;
int ret, i;
xfer = svc_i3c_master_alloc_xfer(master, nxfers);
if (!xfer)
return -ENOMEM;
xfer->type = SVC_I3C_MCTRL_TYPE_I2C;
for (i = 0; i < nxfers; i++) {
struct svc_i3c_cmd *cmd = &xfer->cmds[i];
cmd->addr = master->addrs[data->index];
cmd->rnw = xfers[i].flags & I2C_M_RD;
cmd->in = cmd->rnw ? xfers[i].buf : NULL;
cmd->out = cmd->rnw ? NULL : xfers[i].buf;
cmd->len = xfers[i].len;
cmd->actual_len = cmd->rnw ? xfers[i].len : 0;
cmd->continued = (i + 1 < nxfers);
}
mutex_lock(&master->lock);
svc_i3c_master_enqueue_xfer(master, xfer);
if (!wait_for_completion_timeout(&xfer->comp, m->i2c.timeout))
svc_i3c_master_dequeue_xfer(master, xfer);
mutex_unlock(&master->lock);
ret = xfer->ret;
svc_i3c_master_free_xfer(xfer);
return ret;
}
static int svc_i3c_master_request_ibi(struct i3c_dev_desc *dev,
const struct i3c_ibi_setup *req)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct svc_i3c_master *master = to_svc_i3c_master(m);
struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
unsigned long flags;
unsigned int i;
if (dev->ibi->max_payload_len > SVC_I3C_FIFO_SIZE) {
dev_err(master->dev, "IBI max payload %d should be < %d\n",
dev->ibi->max_payload_len, SVC_I3C_FIFO_SIZE);
return -ERANGE;
}
data->ibi_pool = i3c_generic_ibi_alloc_pool(dev, req);
if (IS_ERR(data->ibi_pool))
return PTR_ERR(data->ibi_pool);
spin_lock_irqsave(&master->ibi.lock, flags);
for (i = 0; i < master->ibi.num_slots; i++) {
if (!master->ibi.slots[i]) {
data->ibi = i;
master->ibi.slots[i] = dev;
break;
}
}
spin_unlock_irqrestore(&master->ibi.lock, flags);
if (i < master->ibi.num_slots)
return 0;
i3c_generic_ibi_free_pool(data->ibi_pool);
data->ibi_pool = NULL;
return -ENOSPC;
}
static void svc_i3c_master_free_ibi(struct i3c_dev_desc *dev)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct svc_i3c_master *master = to_svc_i3c_master(m);
struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
unsigned long flags;
spin_lock_irqsave(&master->ibi.lock, flags);
master->ibi.slots[data->ibi] = NULL;
data->ibi = -1;
spin_unlock_irqrestore(&master->ibi.lock, flags);
i3c_generic_ibi_free_pool(data->ibi_pool);
}
static int svc_i3c_master_enable_ibi(struct i3c_dev_desc *dev)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct svc_i3c_master *master = to_svc_i3c_master(m);
int ret;
ret = pm_runtime_resume_and_get(master->dev);
if (ret < 0) {
dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
return ret;
}
master->enabled_events++;
svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
return i3c_master_enec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
}
static int svc_i3c_master_disable_ibi(struct i3c_dev_desc *dev)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct svc_i3c_master *master = to_svc_i3c_master(m);
int ret;
master->enabled_events--;
if (!master->enabled_events)
svc_i3c_master_disable_interrupts(master);
ret = i3c_master_disec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
pm_runtime_put_autosuspend(master->dev);
return ret;
}
static int svc_i3c_master_enable_hotjoin(struct i3c_master_controller *m)
{
struct svc_i3c_master *master = to_svc_i3c_master(m);
int ret;
ret = pm_runtime_resume_and_get(master->dev);
if (ret < 0) {
dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
return ret;
}
master->enabled_events |= SVC_I3C_EVENT_HOTJOIN;
svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
return 0;
}
static int svc_i3c_master_disable_hotjoin(struct i3c_master_controller *m)
{
struct svc_i3c_master *master = to_svc_i3c_master(m);
master->enabled_events &= ~SVC_I3C_EVENT_HOTJOIN;
if (!master->enabled_events)
svc_i3c_master_disable_interrupts(master);
pm_runtime_put_autosuspend(master->dev);
return 0;
}
static void svc_i3c_master_recycle_ibi_slot(struct i3c_dev_desc *dev,
struct i3c_ibi_slot *slot)
{
struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
i3c_generic_ibi_recycle_slot(data->ibi_pool, slot);
}
static const struct i3c_master_controller_ops svc_i3c_master_ops = {
.bus_init = svc_i3c_master_bus_init,
.bus_cleanup = svc_i3c_master_bus_cleanup,
.attach_i3c_dev = svc_i3c_master_attach_i3c_dev,
.detach_i3c_dev = svc_i3c_master_detach_i3c_dev,
.reattach_i3c_dev = svc_i3c_master_reattach_i3c_dev,
.attach_i2c_dev = svc_i3c_master_attach_i2c_dev,
.detach_i2c_dev = svc_i3c_master_detach_i2c_dev,
.do_daa = svc_i3c_master_do_daa,
.supports_ccc_cmd = svc_i3c_master_supports_ccc_cmd,
.send_ccc_cmd = svc_i3c_master_send_ccc_cmd,
.i3c_xfers = svc_i3c_master_i3c_xfers,
.i2c_xfers = svc_i3c_master_i2c_xfers,
.request_ibi = svc_i3c_master_request_ibi,
.free_ibi = svc_i3c_master_free_ibi,
.recycle_ibi_slot = svc_i3c_master_recycle_ibi_slot,
.enable_ibi = svc_i3c_master_enable_ibi,
.disable_ibi = svc_i3c_master_disable_ibi,
.enable_hotjoin = svc_i3c_master_enable_hotjoin,
.disable_hotjoin = svc_i3c_master_disable_hotjoin,
.set_speed = svc_i3c_master_set_speed,
};
static int svc_i3c_master_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct svc_i3c_master *master;
int ret, i;
master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
if (!master)
return -ENOMEM;
master->drvdata = of_device_get_match_data(dev);
if (!master->drvdata)
return -EINVAL;
master->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(master->regs))
return PTR_ERR(master->regs);
master->num_clks = devm_clk_bulk_get_all(dev, &master->clks);
if (master->num_clks < 0)
return dev_err_probe(dev, -EINVAL, "can't get I3C clocks\n");
for (i = 0; i < master->num_clks; i++) {
if (!strcmp(master->clks[i].id, "fast_clk"))
break;
}
if (i == master->num_clks)
return dev_err_probe(dev, -EINVAL,
"can't get I3C peripheral clock\n");
master->fclk = master->clks[i].clk;
if (IS_ERR(master->fclk))
return PTR_ERR(master->fclk);
master->irq = platform_get_irq(pdev, 0);
if (master->irq < 0)
return master->irq;
master->dev = dev;
ret = clk_bulk_prepare_enable(master->num_clks, master->clks);
if (ret)
return dev_err_probe(dev, ret, "can't enable I3C clocks\n");
INIT_WORK(&master->hj_work, svc_i3c_master_hj_work);
mutex_init(&master->lock);
ret = devm_request_irq(dev, master->irq, svc_i3c_master_irq_handler,
IRQF_NO_SUSPEND, "svc-i3c-irq", master);
if (ret)
goto err_disable_clks;
master->free_slots = GENMASK(SVC_I3C_MAX_DEVS - 1, 0);
spin_lock_init(&master->xferqueue.lock);
INIT_LIST_HEAD(&master->xferqueue.list);
spin_lock_init(&master->ibi.lock);
master->ibi.num_slots = SVC_I3C_MAX_DEVS;
master->ibi.slots = devm_kcalloc(&pdev->dev, master->ibi.num_slots,
sizeof(*master->ibi.slots),
GFP_KERNEL);
if (!master->ibi.slots) {
ret = -ENOMEM;
goto err_disable_clks;
}
platform_set_drvdata(pdev, master);
pm_runtime_set_autosuspend_delay(&pdev->dev, SVC_I3C_PM_TIMEOUT_MS);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
svc_i3c_master_reset(master);
/* Register the master */
ret = i3c_master_register(&master->base, &pdev->dev,
&svc_i3c_master_ops, false);
if (ret)
goto rpm_disable;
pm_runtime_put_autosuspend(&pdev->dev);
return 0;
rpm_disable:
pm_runtime_dont_use_autosuspend(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
err_disable_clks:
clk_bulk_disable_unprepare(master->num_clks, master->clks);
return ret;
}
static void svc_i3c_master_remove(struct platform_device *pdev)
{
struct svc_i3c_master *master = platform_get_drvdata(pdev);
cancel_work_sync(&master->hj_work);
i3c_master_unregister(&master->base);
pm_runtime_dont_use_autosuspend(&pdev->dev);
pm_runtime_disable(&pdev->dev);
}
static void svc_i3c_save_regs(struct svc_i3c_master *master)
{
master->saved_regs.mconfig = readl(master->regs + SVC_I3C_MCONFIG);
master->saved_regs.mdynaddr = readl(master->regs + SVC_I3C_MDYNADDR);
}
static void svc_i3c_restore_regs(struct svc_i3c_master *master)
{
if (readl(master->regs + SVC_I3C_MDYNADDR) !=
master->saved_regs.mdynaddr) {
writel(master->saved_regs.mconfig,
master->regs + SVC_I3C_MCONFIG);
writel(master->saved_regs.mdynaddr,
master->regs + SVC_I3C_MDYNADDR);
}
}
static int __maybe_unused svc_i3c_runtime_suspend(struct device *dev)
{
struct svc_i3c_master *master = dev_get_drvdata(dev);
svc_i3c_save_regs(master);
clk_bulk_disable_unprepare(master->num_clks, master->clks);
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static int __maybe_unused svc_i3c_runtime_resume(struct device *dev)
{
struct svc_i3c_master *master = dev_get_drvdata(dev);
int ret;
pinctrl_pm_select_default_state(dev);
ret = clk_bulk_prepare_enable(master->num_clks, master->clks);
if (ret)
return ret;
svc_i3c_restore_regs(master);
return 0;
}
static const struct dev_pm_ops svc_i3c_pm_ops = {
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(svc_i3c_runtime_suspend,
svc_i3c_runtime_resume, NULL)
};
static const struct svc_i3c_drvdata npcm845_drvdata = {
.quirks = SVC_I3C_QUIRK_FIFO_EMPTY |
SVC_I3C_QUIRK_FALSE_SLVSTART |
SVC_I3C_QUIRK_DAA_CORRUPT,
};
static const struct svc_i3c_drvdata svc_default_drvdata = {};
static const struct of_device_id svc_i3c_master_of_match_tbl[] = {
{ .compatible = "nuvoton,npcm845-i3c", .data = &npcm845_drvdata },
{ .compatible = "silvaco,i3c-master-v1", .data = &svc_default_drvdata },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, svc_i3c_master_of_match_tbl);
static struct platform_driver svc_i3c_master = {
.probe = svc_i3c_master_probe,
.remove = svc_i3c_master_remove,
.driver = {
.name = "silvaco-i3c-master",
.of_match_table = svc_i3c_master_of_match_tbl,
.pm = &svc_i3c_pm_ops,
},
};
module_platform_driver(svc_i3c_master);
MODULE_AUTHOR("Conor Culhane <conor.culhane@silvaco.com>");
MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
MODULE_DESCRIPTION("Silvaco dual-role I3C master driver");
MODULE_LICENSE("GPL v2");