1
0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2026-01-16 19:45:39 +00:00
liuye 1c7b17cf05 mm/vmscan: fix hard LOCKUP in function isolate_lru_folios
This fixes the following hard lockup in isolate_lru_folios() during memory
reclaim.  If the LRU mostly contains ineligible folios this may trigger
watchdog.

watchdog: Watchdog detected hard LOCKUP on cpu 173
RIP: 0010:native_queued_spin_lock_slowpath+0x255/0x2a0
Call Trace:
	_raw_spin_lock_irqsave+0x31/0x40
	folio_lruvec_lock_irqsave+0x5f/0x90
	folio_batch_move_lru+0x91/0x150
	lru_add_drain_per_cpu+0x1c/0x40
	process_one_work+0x17d/0x350
	worker_thread+0x27b/0x3a0
	kthread+0xe8/0x120
	ret_from_fork+0x34/0x50
	ret_from_fork_asm+0x1b/0x30

lruvec->lru_lock owner:

PID: 2865     TASK: ffff888139214d40  CPU: 40   COMMAND: "kswapd0"
 #0 [fffffe0000945e60] crash_nmi_callback at ffffffffa567a555
 #1 [fffffe0000945e68] nmi_handle at ffffffffa563b171
 #2 [fffffe0000945eb0] default_do_nmi at ffffffffa6575920
 #3 [fffffe0000945ed0] exc_nmi at ffffffffa6575af4
 #4 [fffffe0000945ef0] end_repeat_nmi at ffffffffa6601dde
    [exception RIP: isolate_lru_folios+403]
    RIP: ffffffffa597df53  RSP: ffffc90006fb7c28  RFLAGS: 00000002
    RAX: 0000000000000001  RBX: ffffc90006fb7c60  RCX: ffffea04a2196f88
    RDX: ffffc90006fb7c60  RSI: ffffc90006fb7c60  RDI: ffffea04a2197048
    RBP: ffff88812cbd3010   R8: ffffea04a2197008   R9: 0000000000000001
    R10: 0000000000000000  R11: 0000000000000001  R12: ffffea04a2197008
    R13: ffffea04a2197048  R14: ffffc90006fb7de8  R15: 0000000003e3e937
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
    <NMI exception stack>
 #5 [ffffc90006fb7c28] isolate_lru_folios at ffffffffa597df53
 #6 [ffffc90006fb7cf8] shrink_active_list at ffffffffa597f788
 #7 [ffffc90006fb7da8] balance_pgdat at ffffffffa5986db0
 #8 [ffffc90006fb7ec0] kswapd at ffffffffa5987354
 #9 [ffffc90006fb7ef8] kthread at ffffffffa5748238
crash>

Scenario:
User processe are requesting a large amount of memory and keep page active.
Then a module continuously requests memory from ZONE_DMA32 area.
Memory reclaim will be triggered due to ZONE_DMA32 watermark alarm reached.
However pages in the LRU(active_anon) list are mostly from
the ZONE_NORMAL area.

Reproduce:
Terminal 1: Construct to continuously increase pages active(anon).
mkdir /tmp/memory
mount -t tmpfs -o size=1024000M tmpfs /tmp/memory
dd if=/dev/zero of=/tmp/memory/block bs=4M
tail /tmp/memory/block

Terminal 2:
vmstat -a 1
active will increase.
procs ---memory--- ---swap-- ---io---- -system-- ---cpu--- ...
 r  b   swpd   free  inact active   si   so    bi    bo
 1  0   0 1445623076 45898836 83646008    0    0     0
 1  0   0 1445623076 43450228 86094616    0    0     0
 1  0   0 1445623076 41003480 88541364    0    0     0
 1  0   0 1445623076 38557088 90987756    0    0     0
 1  0   0 1445623076 36109688 93435156    0    0     0
 1  0   0 1445619552 33663256 95881632    0    0     0
 1  0   0 1445619804 31217140 98327792    0    0     0
 1  0   0 1445619804 28769988 100774944    0    0     0
 1  0   0 1445619804 26322348 103222584    0    0     0
 1  0   0 1445619804 23875592 105669340    0    0     0

cat /proc/meminfo | head
Active(anon) increase.
MemTotal:       1579941036 kB
MemFree:        1445618500 kB
MemAvailable:   1453013224 kB
Buffers:            6516 kB
Cached:         128653956 kB
SwapCached:            0 kB
Active:         118110812 kB
Inactive:       11436620 kB
Active(anon):   115345744 kB
Inactive(anon):   945292 kB

When the Active(anon) is 115345744 kB, insmod module triggers
the ZONE_DMA32 watermark.

perf record -e vmscan:mm_vmscan_lru_isolate -aR
perf script
isolate_mode=0 classzone=1 order=1 nr_requested=32 nr_scanned=2
nr_skipped=2 nr_taken=0 lru=active_anon
isolate_mode=0 classzone=1 order=1 nr_requested=32 nr_scanned=0
nr_skipped=0 nr_taken=0 lru=active_anon
isolate_mode=0 classzone=1 order=0 nr_requested=32 nr_scanned=28835844
nr_skipped=28835844 nr_taken=0 lru=active_anon
isolate_mode=0 classzone=1 order=1 nr_requested=32 nr_scanned=28835844
nr_skipped=28835844 nr_taken=0 lru=active_anon
isolate_mode=0 classzone=1 order=0 nr_requested=32 nr_scanned=29
nr_skipped=29 nr_taken=0 lru=active_anon
isolate_mode=0 classzone=1 order=0 nr_requested=32 nr_scanned=0
nr_skipped=0 nr_taken=0 lru=active_anon

See nr_scanned=28835844.
28835844 * 4k = 115343376KB approximately equal to 115345744 kB.

If increase Active(anon) to 1000G then insmod module triggers
the ZONE_DMA32 watermark. hard lockup will occur.

In my device nr_scanned = 0000000003e3e937 when hard lockup.
Convert to memory size 0x0000000003e3e937 * 4KB = 261072092 KB.

   [ffffc90006fb7c28] isolate_lru_folios at ffffffffa597df53
    ffffc90006fb7c30: 0000000000000020 0000000000000000
    ffffc90006fb7c40: ffffc90006fb7d40 ffff88812cbd3000
    ffffc90006fb7c50: ffffc90006fb7d30 0000000106fb7de8
    ffffc90006fb7c60: ffffea04a2197008 ffffea0006ed4a48
    ffffc90006fb7c70: 0000000000000000 0000000000000000
    ffffc90006fb7c80: 0000000000000000 0000000000000000
    ffffc90006fb7c90: 0000000000000000 0000000000000000
    ffffc90006fb7ca0: 0000000000000000 0000000003e3e937
    ffffc90006fb7cb0: 0000000000000000 0000000000000000
    ffffc90006fb7cc0: 8d7c0b56b7874b00 ffff88812cbd3000

About the Fixes:
Why did it take eight years to be discovered?

The problem requires the following conditions to occur:
1. The device memory should be large enough.
2. Pages in the LRU(active_anon) list are mostly from the ZONE_NORMAL area.
3. The memory in ZONE_DMA32 needs to reach the watermark.

If the memory is not large enough, or if the usage design of ZONE_DMA32
area memory is reasonable, this problem is difficult to detect.

notes:
The problem is most likely to occur in ZONE_DMA32 and ZONE_NORMAL,
but other suitable scenarios may also trigger the problem.

Link: https://lkml.kernel.org/r/20241119060842.274072-1-liuye@kylinos.cn
Fixes: b2e18757f2c9 ("mm, vmscan: begin reclaiming pages on a per-node basis")
Signed-off-by: liuye <liuye@kylinos.cn>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Yang Shi <yang@os.amperecomputing.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-02-01 03:53:23 -08:00

711 lines
22 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_SWAP_H
#define _LINUX_SWAP_H
#include <linux/spinlock.h>
#include <linux/linkage.h>
#include <linux/mmzone.h>
#include <linux/list.h>
#include <linux/memcontrol.h>
#include <linux/sched.h>
#include <linux/node.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/atomic.h>
#include <linux/page-flags.h>
#include <uapi/linux/mempolicy.h>
#include <asm/page.h>
struct notifier_block;
struct bio;
struct pagevec;
#define SWAP_FLAG_PREFER 0x8000 /* set if swap priority specified */
#define SWAP_FLAG_PRIO_MASK 0x7fff
#define SWAP_FLAG_PRIO_SHIFT 0
#define SWAP_FLAG_DISCARD 0x10000 /* enable discard for swap */
#define SWAP_FLAG_DISCARD_ONCE 0x20000 /* discard swap area at swapon-time */
#define SWAP_FLAG_DISCARD_PAGES 0x40000 /* discard page-clusters after use */
#define SWAP_FLAGS_VALID (SWAP_FLAG_PRIO_MASK | SWAP_FLAG_PREFER | \
SWAP_FLAG_DISCARD | SWAP_FLAG_DISCARD_ONCE | \
SWAP_FLAG_DISCARD_PAGES)
#define SWAP_BATCH 64
static inline int current_is_kswapd(void)
{
return current->flags & PF_KSWAPD;
}
/*
* MAX_SWAPFILES defines the maximum number of swaptypes: things which can
* be swapped to. The swap type and the offset into that swap type are
* encoded into pte's and into pgoff_t's in the swapcache. Using five bits
* for the type means that the maximum number of swapcache pages is 27 bits
* on 32-bit-pgoff_t architectures. And that assumes that the architecture packs
* the type/offset into the pte as 5/27 as well.
*/
#define MAX_SWAPFILES_SHIFT 5
/*
* Use some of the swap files numbers for other purposes. This
* is a convenient way to hook into the VM to trigger special
* actions on faults.
*/
/*
* PTE markers are used to persist information onto PTEs that otherwise
* should be a none pte. As its name "PTE" hints, it should only be
* applied to the leaves of pgtables.
*/
#define SWP_PTE_MARKER_NUM 1
#define SWP_PTE_MARKER (MAX_SWAPFILES + SWP_HWPOISON_NUM + \
SWP_MIGRATION_NUM + SWP_DEVICE_NUM)
/*
* Unaddressable device memory support. See include/linux/hmm.h and
* Documentation/mm/hmm.rst. Short description is we need struct pages for
* device memory that is unaddressable (inaccessible) by CPU, so that we can
* migrate part of a process memory to device memory.
*
* When a page is migrated from CPU to device, we set the CPU page table entry
* to a special SWP_DEVICE_{READ|WRITE} entry.
*
* When a page is mapped by the device for exclusive access we set the CPU page
* table entries to special SWP_DEVICE_EXCLUSIVE_* entries.
*/
#ifdef CONFIG_DEVICE_PRIVATE
#define SWP_DEVICE_NUM 4
#define SWP_DEVICE_WRITE (MAX_SWAPFILES+SWP_HWPOISON_NUM+SWP_MIGRATION_NUM)
#define SWP_DEVICE_READ (MAX_SWAPFILES+SWP_HWPOISON_NUM+SWP_MIGRATION_NUM+1)
#define SWP_DEVICE_EXCLUSIVE_WRITE (MAX_SWAPFILES+SWP_HWPOISON_NUM+SWP_MIGRATION_NUM+2)
#define SWP_DEVICE_EXCLUSIVE_READ (MAX_SWAPFILES+SWP_HWPOISON_NUM+SWP_MIGRATION_NUM+3)
#else
#define SWP_DEVICE_NUM 0
#endif
/*
* Page migration support.
*
* SWP_MIGRATION_READ_EXCLUSIVE is only applicable to anonymous pages and
* indicates that the referenced (part of) an anonymous page is exclusive to
* a single process. For SWP_MIGRATION_WRITE, that information is implicit:
* (part of) an anonymous page that are mapped writable are exclusive to a
* single process.
*/
#ifdef CONFIG_MIGRATION
#define SWP_MIGRATION_NUM 3
#define SWP_MIGRATION_READ (MAX_SWAPFILES + SWP_HWPOISON_NUM)
#define SWP_MIGRATION_READ_EXCLUSIVE (MAX_SWAPFILES + SWP_HWPOISON_NUM + 1)
#define SWP_MIGRATION_WRITE (MAX_SWAPFILES + SWP_HWPOISON_NUM + 2)
#else
#define SWP_MIGRATION_NUM 0
#endif
/*
* Handling of hardware poisoned pages with memory corruption.
*/
#ifdef CONFIG_MEMORY_FAILURE
#define SWP_HWPOISON_NUM 1
#define SWP_HWPOISON MAX_SWAPFILES
#else
#define SWP_HWPOISON_NUM 0
#endif
#define MAX_SWAPFILES \
((1 << MAX_SWAPFILES_SHIFT) - SWP_DEVICE_NUM - \
SWP_MIGRATION_NUM - SWP_HWPOISON_NUM - \
SWP_PTE_MARKER_NUM)
/*
* Magic header for a swap area. The first part of the union is
* what the swap magic looks like for the old (limited to 128MB)
* swap area format, the second part of the union adds - in the
* old reserved area - some extra information. Note that the first
* kilobyte is reserved for boot loader or disk label stuff...
*
* Having the magic at the end of the PAGE_SIZE makes detecting swap
* areas somewhat tricky on machines that support multiple page sizes.
* For 2.5 we'll probably want to move the magic to just beyond the
* bootbits...
*/
union swap_header {
struct {
char reserved[PAGE_SIZE - 10];
char magic[10]; /* SWAP-SPACE or SWAPSPACE2 */
} magic;
struct {
char bootbits[1024]; /* Space for disklabel etc. */
__u32 version;
__u32 last_page;
__u32 nr_badpages;
unsigned char sws_uuid[16];
unsigned char sws_volume[16];
__u32 padding[117];
__u32 badpages[1];
} info;
};
/*
* current->reclaim_state points to one of these when a task is running
* memory reclaim
*/
struct reclaim_state {
/* pages reclaimed outside of LRU-based reclaim */
unsigned long reclaimed;
#ifdef CONFIG_LRU_GEN
/* per-thread mm walk data */
struct lru_gen_mm_walk *mm_walk;
#endif
};
/*
* mm_account_reclaimed_pages(): account reclaimed pages outside of LRU-based
* reclaim
* @pages: number of pages reclaimed
*
* If the current process is undergoing a reclaim operation, increment the
* number of reclaimed pages by @pages.
*/
static inline void mm_account_reclaimed_pages(unsigned long pages)
{
if (current->reclaim_state)
current->reclaim_state->reclaimed += pages;
}
#ifdef __KERNEL__
struct address_space;
struct sysinfo;
struct writeback_control;
struct zone;
/*
* A swap extent maps a range of a swapfile's PAGE_SIZE pages onto a range of
* disk blocks. A rbtree of swap extents maps the entire swapfile (Where the
* term `swapfile' refers to either a blockdevice or an IS_REG file). Apart
* from setup, they're handled identically.
*
* We always assume that blocks are of size PAGE_SIZE.
*/
struct swap_extent {
struct rb_node rb_node;
pgoff_t start_page;
pgoff_t nr_pages;
sector_t start_block;
};
/*
* Max bad pages in the new format..
*/
#define MAX_SWAP_BADPAGES \
((offsetof(union swap_header, magic.magic) - \
offsetof(union swap_header, info.badpages)) / sizeof(int))
enum {
SWP_USED = (1 << 0), /* is slot in swap_info[] used? */
SWP_WRITEOK = (1 << 1), /* ok to write to this swap? */
SWP_DISCARDABLE = (1 << 2), /* blkdev support discard */
SWP_DISCARDING = (1 << 3), /* now discarding a free cluster */
SWP_SOLIDSTATE = (1 << 4), /* blkdev seeks are cheap */
SWP_CONTINUED = (1 << 5), /* swap_map has count continuation */
SWP_BLKDEV = (1 << 6), /* its a block device */
SWP_ACTIVATED = (1 << 7), /* set after swap_activate success */
SWP_FS_OPS = (1 << 8), /* swapfile operations go through fs */
SWP_AREA_DISCARD = (1 << 9), /* single-time swap area discards */
SWP_PAGE_DISCARD = (1 << 10), /* freed swap page-cluster discards */
SWP_STABLE_WRITES = (1 << 11), /* no overwrite PG_writeback pages */
SWP_SYNCHRONOUS_IO = (1 << 12), /* synchronous IO is efficient */
/* add others here before... */
};
#define SWAP_CLUSTER_MAX 32UL
#define SWAP_CLUSTER_MAX_SKIPPED (SWAP_CLUSTER_MAX << 10)
#define COMPACT_CLUSTER_MAX SWAP_CLUSTER_MAX
/* Bit flag in swap_map */
#define SWAP_HAS_CACHE 0x40 /* Flag page is cached, in first swap_map */
#define COUNT_CONTINUED 0x80 /* Flag swap_map continuation for full count */
/* Special value in first swap_map */
#define SWAP_MAP_MAX 0x3e /* Max count */
#define SWAP_MAP_BAD 0x3f /* Note page is bad */
#define SWAP_MAP_SHMEM 0xbf /* Owned by shmem/tmpfs */
/* Special value in each swap_map continuation */
#define SWAP_CONT_MAX 0x7f /* Max count */
/*
* We use this to track usage of a cluster. A cluster is a block of swap disk
* space with SWAPFILE_CLUSTER pages long and naturally aligns in disk. All
* free clusters are organized into a list. We fetch an entry from the list to
* get a free cluster.
*
* The flags field determines if a cluster is free. This is
* protected by cluster lock.
*/
struct swap_cluster_info {
spinlock_t lock; /*
* Protect swap_cluster_info fields
* other than list, and swap_info_struct->swap_map
* elements corresponding to the swap cluster.
*/
u16 count;
u8 flags;
u8 order;
struct list_head list;
};
/* All on-list cluster must have a non-zero flag. */
enum swap_cluster_flags {
CLUSTER_FLAG_NONE = 0, /* For temporary off-list cluster */
CLUSTER_FLAG_FREE,
CLUSTER_FLAG_NONFULL,
CLUSTER_FLAG_FRAG,
/* Clusters with flags above are allocatable */
CLUSTER_FLAG_USABLE = CLUSTER_FLAG_FRAG,
CLUSTER_FLAG_FULL,
CLUSTER_FLAG_DISCARD,
CLUSTER_FLAG_MAX,
};
/*
* The first page in the swap file is the swap header, which is always marked
* bad to prevent it from being allocated as an entry. This also prevents the
* cluster to which it belongs being marked free. Therefore 0 is safe to use as
* a sentinel to indicate an entry is not valid.
*/
#define SWAP_ENTRY_INVALID 0
#ifdef CONFIG_THP_SWAP
#define SWAP_NR_ORDERS (PMD_ORDER + 1)
#else
#define SWAP_NR_ORDERS 1
#endif
/*
* We assign a cluster to each CPU, so each CPU can allocate swap entry from
* its own cluster and swapout sequentially. The purpose is to optimize swapout
* throughput.
*/
struct percpu_cluster {
local_lock_t lock; /* Protect the percpu_cluster above */
unsigned int next[SWAP_NR_ORDERS]; /* Likely next allocation offset */
};
/*
* The in-memory structure used to track swap areas.
*/
struct swap_info_struct {
struct percpu_ref users; /* indicate and keep swap device valid. */
unsigned long flags; /* SWP_USED etc: see above */
signed short prio; /* swap priority of this type */
struct plist_node list; /* entry in swap_active_head */
signed char type; /* strange name for an index */
unsigned int max; /* extent of the swap_map */
unsigned char *swap_map; /* vmalloc'ed array of usage counts */
unsigned long *zeromap; /* kvmalloc'ed bitmap to track zero pages */
struct swap_cluster_info *cluster_info; /* cluster info. Only for SSD */
struct list_head free_clusters; /* free clusters list */
struct list_head full_clusters; /* full clusters list */
struct list_head nonfull_clusters[SWAP_NR_ORDERS];
/* list of cluster that contains at least one free slot */
struct list_head frag_clusters[SWAP_NR_ORDERS];
/* list of cluster that are fragmented or contented */
atomic_long_t frag_cluster_nr[SWAP_NR_ORDERS];
unsigned int pages; /* total of usable pages of swap */
atomic_long_t inuse_pages; /* number of those currently in use */
struct percpu_cluster __percpu *percpu_cluster; /* per cpu's swap location */
struct percpu_cluster *global_cluster; /* Use one global cluster for rotating device */
spinlock_t global_cluster_lock; /* Serialize usage of global cluster */
struct rb_root swap_extent_root;/* root of the swap extent rbtree */
struct block_device *bdev; /* swap device or bdev of swap file */
struct file *swap_file; /* seldom referenced */
struct completion comp; /* seldom referenced */
spinlock_t lock; /*
* protect map scan related fields like
* swap_map, lowest_bit, highest_bit,
* inuse_pages, cluster_next,
* cluster_nr, lowest_alloc,
* highest_alloc, free/discard cluster
* list. other fields are only changed
* at swapon/swapoff, so are protected
* by swap_lock. changing flags need
* hold this lock and swap_lock. If
* both locks need hold, hold swap_lock
* first.
*/
spinlock_t cont_lock; /*
* protect swap count continuation page
* list.
*/
struct work_struct discard_work; /* discard worker */
struct work_struct reclaim_work; /* reclaim worker */
struct list_head discard_clusters; /* discard clusters list */
struct plist_node avail_lists[]; /*
* entries in swap_avail_heads, one
* entry per node.
* Must be last as the number of the
* array is nr_node_ids, which is not
* a fixed value so have to allocate
* dynamically.
* And it has to be an array so that
* plist_for_each_* can work.
*/
};
static inline swp_entry_t page_swap_entry(struct page *page)
{
struct folio *folio = page_folio(page);
swp_entry_t entry = folio->swap;
entry.val += folio_page_idx(folio, page);
return entry;
}
/* linux/mm/workingset.c */
bool workingset_test_recent(void *shadow, bool file, bool *workingset,
bool flush);
void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages);
void *workingset_eviction(struct folio *folio, struct mem_cgroup *target_memcg);
void workingset_refault(struct folio *folio, void *shadow);
void workingset_activation(struct folio *folio);
/* linux/mm/page_alloc.c */
extern unsigned long totalreserve_pages;
/* Definition of global_zone_page_state not available yet */
#define nr_free_pages() global_zone_page_state(NR_FREE_PAGES)
/* linux/mm/swap.c */
void lru_note_cost(struct lruvec *lruvec, bool file,
unsigned int nr_io, unsigned int nr_rotated);
void lru_note_cost_refault(struct folio *);
void folio_add_lru(struct folio *);
void folio_add_lru_vma(struct folio *, struct vm_area_struct *);
void mark_page_accessed(struct page *);
void folio_mark_accessed(struct folio *);
extern atomic_t lru_disable_count;
static inline bool lru_cache_disabled(void)
{
return atomic_read(&lru_disable_count);
}
static inline void lru_cache_enable(void)
{
atomic_dec(&lru_disable_count);
}
extern void lru_cache_disable(void);
extern void lru_add_drain(void);
extern void lru_add_drain_cpu(int cpu);
extern void lru_add_drain_cpu_zone(struct zone *zone);
extern void lru_add_drain_all(void);
void folio_deactivate(struct folio *folio);
void folio_mark_lazyfree(struct folio *folio);
extern void swap_setup(void);
/* linux/mm/vmscan.c */
extern unsigned long zone_reclaimable_pages(struct zone *zone);
extern unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
gfp_t gfp_mask, nodemask_t *mask);
#define MEMCG_RECLAIM_MAY_SWAP (1 << 1)
#define MEMCG_RECLAIM_PROACTIVE (1 << 2)
#define MIN_SWAPPINESS 0
#define MAX_SWAPPINESS 200
extern unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
unsigned long nr_pages,
gfp_t gfp_mask,
unsigned int reclaim_options,
int *swappiness);
extern unsigned long mem_cgroup_shrink_node(struct mem_cgroup *mem,
gfp_t gfp_mask, bool noswap,
pg_data_t *pgdat,
unsigned long *nr_scanned);
extern unsigned long shrink_all_memory(unsigned long nr_pages);
extern int vm_swappiness;
long remove_mapping(struct address_space *mapping, struct folio *folio);
#ifdef CONFIG_NUMA
extern int node_reclaim_mode;
extern int sysctl_min_unmapped_ratio;
extern int sysctl_min_slab_ratio;
#else
#define node_reclaim_mode 0
#endif
static inline bool node_reclaim_enabled(void)
{
/* Is any node_reclaim_mode bit set? */
return node_reclaim_mode & (RECLAIM_ZONE|RECLAIM_WRITE|RECLAIM_UNMAP);
}
void check_move_unevictable_folios(struct folio_batch *fbatch);
extern void __meminit kswapd_run(int nid);
extern void __meminit kswapd_stop(int nid);
#ifdef CONFIG_SWAP
int add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
unsigned long nr_pages, sector_t start_block);
int generic_swapfile_activate(struct swap_info_struct *, struct file *,
sector_t *);
static inline unsigned long total_swapcache_pages(void)
{
return global_node_page_state(NR_SWAPCACHE);
}
void free_swap_cache(struct folio *folio);
void free_page_and_swap_cache(struct page *);
void free_pages_and_swap_cache(struct encoded_page **, int);
/* linux/mm/swapfile.c */
extern atomic_long_t nr_swap_pages;
extern long total_swap_pages;
extern atomic_t nr_rotate_swap;
extern bool has_usable_swap(void);
/* Swap 50% full? Release swapcache more aggressively.. */
static inline bool vm_swap_full(void)
{
return atomic_long_read(&nr_swap_pages) * 2 < total_swap_pages;
}
static inline long get_nr_swap_pages(void)
{
return atomic_long_read(&nr_swap_pages);
}
extern void si_swapinfo(struct sysinfo *);
swp_entry_t folio_alloc_swap(struct folio *folio);
bool folio_free_swap(struct folio *folio);
void put_swap_folio(struct folio *folio, swp_entry_t entry);
extern swp_entry_t get_swap_page_of_type(int);
extern int get_swap_pages(int n, swp_entry_t swp_entries[], int order);
extern int add_swap_count_continuation(swp_entry_t, gfp_t);
extern void swap_shmem_alloc(swp_entry_t, int);
extern int swap_duplicate(swp_entry_t);
extern int swapcache_prepare(swp_entry_t entry, int nr);
extern void swap_free_nr(swp_entry_t entry, int nr_pages);
extern void swapcache_free_entries(swp_entry_t *entries, int n);
extern void free_swap_and_cache_nr(swp_entry_t entry, int nr);
int swap_type_of(dev_t device, sector_t offset);
int find_first_swap(dev_t *device);
extern unsigned int count_swap_pages(int, int);
extern sector_t swapdev_block(int, pgoff_t);
extern int __swap_count(swp_entry_t entry);
extern int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry);
extern int swp_swapcount(swp_entry_t entry);
struct swap_info_struct *swp_swap_info(swp_entry_t entry);
struct backing_dev_info;
extern int init_swap_address_space(unsigned int type, unsigned long nr_pages);
extern void exit_swap_address_space(unsigned int type);
extern struct swap_info_struct *get_swap_device(swp_entry_t entry);
sector_t swap_folio_sector(struct folio *folio);
static inline void put_swap_device(struct swap_info_struct *si)
{
percpu_ref_put(&si->users);
}
#else /* CONFIG_SWAP */
static inline struct swap_info_struct *swp_swap_info(swp_entry_t entry)
{
return NULL;
}
static inline struct swap_info_struct *get_swap_device(swp_entry_t entry)
{
return NULL;
}
static inline void put_swap_device(struct swap_info_struct *si)
{
}
#define get_nr_swap_pages() 0L
#define total_swap_pages 0L
#define total_swapcache_pages() 0UL
#define vm_swap_full() 0
#define si_swapinfo(val) \
do { (val)->freeswap = (val)->totalswap = 0; } while (0)
/* only sparc can not include linux/pagemap.h in this file
* so leave put_page and release_pages undeclared... */
#define free_page_and_swap_cache(page) \
put_page(page)
#define free_pages_and_swap_cache(pages, nr) \
release_pages((pages), (nr));
static inline void free_swap_and_cache_nr(swp_entry_t entry, int nr)
{
}
static inline void free_swap_cache(struct folio *folio)
{
}
static inline int add_swap_count_continuation(swp_entry_t swp, gfp_t gfp_mask)
{
return 0;
}
static inline void swap_shmem_alloc(swp_entry_t swp, int nr)
{
}
static inline int swap_duplicate(swp_entry_t swp)
{
return 0;
}
static inline int swapcache_prepare(swp_entry_t swp, int nr)
{
return 0;
}
static inline void swap_free_nr(swp_entry_t entry, int nr_pages)
{
}
static inline void put_swap_folio(struct folio *folio, swp_entry_t swp)
{
}
static inline int __swap_count(swp_entry_t entry)
{
return 0;
}
static inline int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
{
return 0;
}
static inline int swp_swapcount(swp_entry_t entry)
{
return 0;
}
static inline swp_entry_t folio_alloc_swap(struct folio *folio)
{
swp_entry_t entry;
entry.val = 0;
return entry;
}
static inline bool folio_free_swap(struct folio *folio)
{
return false;
}
static inline int add_swap_extent(struct swap_info_struct *sis,
unsigned long start_page,
unsigned long nr_pages, sector_t start_block)
{
return -EINVAL;
}
#endif /* CONFIG_SWAP */
static inline void free_swap_and_cache(swp_entry_t entry)
{
free_swap_and_cache_nr(entry, 1);
}
static inline void swap_free(swp_entry_t entry)
{
swap_free_nr(entry, 1);
}
#ifdef CONFIG_MEMCG
static inline int mem_cgroup_swappiness(struct mem_cgroup *memcg)
{
/* Cgroup2 doesn't have per-cgroup swappiness */
if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
return READ_ONCE(vm_swappiness);
/* root ? */
if (mem_cgroup_disabled() || mem_cgroup_is_root(memcg))
return READ_ONCE(vm_swappiness);
return READ_ONCE(memcg->swappiness);
}
#else
static inline int mem_cgroup_swappiness(struct mem_cgroup *mem)
{
return READ_ONCE(vm_swappiness);
}
#endif
#if defined(CONFIG_SWAP) && defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp);
static inline void folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
{
if (mem_cgroup_disabled())
return;
__folio_throttle_swaprate(folio, gfp);
}
#else
static inline void folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
{
}
#endif
#if defined(CONFIG_MEMCG) && defined(CONFIG_SWAP)
void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry);
int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry);
static inline int mem_cgroup_try_charge_swap(struct folio *folio,
swp_entry_t entry)
{
if (mem_cgroup_disabled())
return 0;
return __mem_cgroup_try_charge_swap(folio, entry);
}
extern void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages);
static inline void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
{
if (mem_cgroup_disabled())
return;
__mem_cgroup_uncharge_swap(entry, nr_pages);
}
extern long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg);
extern bool mem_cgroup_swap_full(struct folio *folio);
#else
static inline void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
{
}
static inline int mem_cgroup_try_charge_swap(struct folio *folio,
swp_entry_t entry)
{
return 0;
}
static inline void mem_cgroup_uncharge_swap(swp_entry_t entry,
unsigned int nr_pages)
{
}
static inline long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
return get_nr_swap_pages();
}
static inline bool mem_cgroup_swap_full(struct folio *folio)
{
return vm_swap_full();
}
#endif
#endif /* __KERNEL__*/
#endif /* _LINUX_SWAP_H */